Thord Daniel Hedengren

WordPress Themes

MAKING WORDPRESS BEAUTIFUL

Smashing WordPress Themes®

Table of Contents
Introduction

Part I: What Are WordPress Themes?
Part Il: Hacking a Theme

Part lll: Building Your Own Theme
Part IV: Taking Themes Further

Chapter 1: Getting Started with WordPress

Installing WordPress in Just Five Minutes

Running WordPress Using a Web Host
Running WordPress Locally

Fine Tuning Your WordPress Settings

Permalinks

Media Settings and the Upload Folder
Other noteworthy Settings

Shameless Self Promotion

WordPress Theme Files
WordPress As a CMS
Posts, Pages, and New Custom Post Types

Taxonomies
Custom Post Types

The WordPress Codex
Wrapping It Up

Chapter 2: This is a Theme

About Themes
The Stylesheet

Theme Declaration

Set tags for your theme
Define a child theme

Add comments for developers

The template files at your disposal

Header and Footer Template Files
The Loop and your Content

What is the Wordpress Loop?

The Loop TEMPLATE tag
Using the Loop in TEMPLATE FILEs

The Functions.PHP File
Using Page Templates

Creating a Page Template
Why use Page Templates?

Understanding Template Tags
Wrapping It Up

Chapter 3: Digging into the Twenty Ten Theme

Working With the loop

The external loop.php file
Do | have to use loop.php?

The Twenty Ten loop

Displaying Posts with loops
Example: Listing Only Titles in Category Archives

Working With Template Tags

Passing parameters
about strings, booleans, and integers

Finding the template tag you want
A few words about localization

Conditional Content with Conditional Tags

Working with conditional tags
Example: Adding Conditional Sidebars

Enabling Features in functions.php

Add the add_theme_support template tag
Pass the correct parameters

Adding Widgets using template files

Define widget areas

Add widget areas to the template files
Put widgets to good use

Example: Adding a New Widget Area

The Power of Custom Page templates

Create a Custom page template
Example: Creating an Archives Page Template

Finding Your Way With custom Menus

Declare a Menu Area

Add A Menu area to your template files
Example: Adding a Menu Area

Changing your Header Image

Define the header in functions.php
Display the header in your theme

Example: Adding a Custom Header

Adjusting Your Site Background
Wrapping It Up

Chapter 4: Using Child Themes

The Child Theme Concept

Why are child themes so great?

How Child Themes Work

Getting parent theme styles into a child theme
Finding images in child themes
Functions and child themes

Example: Creating a Simple Child Theme

The perfect Twenty Ten project

Twenty Ten and Child Themes
Example: Adding a Second Sidebar

Using Child Themes in Multiple Network Sites
Wrapping It Up

Chapter 5: Choosing a Theme

Picking the Right Theme

Design issues
Layout issues
Development issues

Theme Frameworks

What Is A Good Framework, Then?

Commercial themes
The Official Themes Directory
Things to be Wary About

Wrapping It Up

Chapter 6: Planning the Theme

Plan Before You Build

The site concept stage
The site design

Your Own Theme Framework

The purpose of a framework
Should you build a theme framework?

Releasing Themes to the public

Getting your themes on wordpress.org
Picking the right license
Localization

The Checklists

The theme checklist
The theme framework checklist
The child theme checklist

Wrapping It Up
Chapter 7: A Semi-Static Theme

WordPress and Semi-Static web Sites

Our fictional semi-static Web site

Web site requirements

Making Categories and Pages Work in Harmony

Fixing the category URLs
Why is this important?

The Semi-Static Theme Layout

What is what in the mock-ups?

Building the semi-static Site

The fundamentals: style.css and functions.php
theme files for our shell (header, footer, and index)

The various sidebars
The loop template

The front page template
Wait, what about the stylesheet?

And We're Done!

Get the semi-static theme for free
Building child themes on Semi-Static sites

Wrapping It Up
Chapter 8: A Media Theme

Building sites for Images and Video

Site layout
Making Everything Fit Together

The content flow

Building the Media site

The functions.PHP file

Setting up the basic shell

Single posts and attachments
The attachment sidebar

Thumbnail browsing in posts
Taking care of the footer

Spicing It Up with Plugins

Lightboxes

Wrapping It Up

Chapter 9: A Magazine Theme

Planning an Online Magazine

The Notes Mag 1.0 theme layout
Dynamic elements for Notes Mag

Building The magazine site

The basic site structure
Starting with the header
Ending with the footer

Getting to the content

Creating the stylesheet
Viewing The theme thus far

Adding Functionality

Starting with functions.php
Adding widget areas

Planning the custom menu
Adding Our custom header logo
Creating Action Hooks

Viewing our final functions.php

Templates, Templates, Templates

Setting up the front page

Populating The front page with content
Single Posts and Pages

The archives

Making Notes Mag Look Good

Styling the menu
A quick look at the archives
Single posts and Pages

Wrapping It Up

Chapter 10: The Buddypress Community

What is BuddyPress?

Should | use BuddyPress?

The BuddyPress Template Pack

The BuddyPress template files overview
Adding the BuddyPress Template Pack to a \WordPress site

Case Study: Adding buddypress Community Features to a site

A few words about buddypress upgrades
Modifying the template files to fit a site
What are all those new tags?

Fixing permalinks and localization
Adding bbPress to Your Groups

About BuddyPress Themes

Focus on community features
Child theming BuddyPress themes

Wrapping It Up
Chapter 11: Extending with Plugins

When Should You USE Plugins?

Developing themes that rely on plugins
How to pick the right plugin

25 Truly Great Plugins

Commenting plugins

Content related stuff

Lightbox Plugins
CMS plugins

Writing Your Own Plugins
Wrapping It Up

Smashing WordPress Themes
Making Wordpress Beautiful
Thord Daniel Hedengren

FWILEY

A Tohn Wiley and Soms, L, Publicaion

This edition first published 2011

© 2011 John Wiley & Sons, Ltd.

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom
Editorial office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to
reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright,
Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright,
Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and
product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective
owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to
provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that
the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required,
the services of a competent professional should be sought.

Trademarks: Wiley and the Wiley Publishing logo are trademarks or registered trademarks of John Wiley and Sons, Inc.
and/ or its affiliates in the United States and/or other countries, and may not be used without written permission. iPhone,
iPad and iPod are trademarks of Apple Computer, Inc. All other trademarks are the property of their respective owners.
Wiley Publishing, Inc. is not associated with any product or vendor mentioned in the book. This book is not endorsed by
Apple Computer, Inc.

A catalogue record for this book is available from the British Library.
ISBN 978-0-470-66990-7

Set in Minion Pro 10/12 by Wiley Composition Services

Printed in U.S. by CJK

February 2011

Publisher’s Acknowledgments

Some of the people who helped bring this book to market include the following:

Editorial and Production

VP Consumer and Technology Publishing Director: Michelle Leete
Associate Director-Book Content Management: Martin Tribe
Associate Publisher: Chris Webb

Publishing Assistant: Ellie Scott

Project Editor: Susan B. Cohen

Copy Editor: Susan B. Cohen

Technical Editor: John O’'Nolan

Editorial Manager: Jodi Jensen

Senior Project Editor: Sara Shlaer

Editorial Assistant: Leslie Saxman
Marketing

Senior Marketing Manager: Louise Breinholt
Marketing Executive: Kate Parrett
Composition Services

Compositor: Indianapolis Composition Services
Proofreader: Susan Hobbs

Indexer: Potomac Indexing, LLC

Smashing WordPress Themes is dedicated to the WordPress community.

We're all playing an important part by making free speech easier online. The more people can express their thoughts, dreams, and ideas, the
better for everyone. Open source in general, and WordPress in particular, play an important role in the free speech movement.

Keep up the great work, dear community.

Thord Daniel Hedengren

About the Author

Thord Daniel Hedengren is addicted to words, which led him to launch his first online newsletter in 1996. It all went downhill from there, with
dozens of Web sites, and a career as an editor and freelancer in both Sweden and abroad.

His international career began with a blog post, which led to a book deal for Smashing WordPress: Beyond the Blog, with Wiley Publishing,
Inc., and an even stronger voice in the WordPress community. You're now holding Thord’s second book.

When not obsessed with words, Thord and his friends build cool Web sites using WordPress at his Web design firm, Odd Alice. He also edits
magazines and writes freelance articles for both print and Web publications (in Swedish and English). You can follow everything Thord on

http://tdh.me.

Thord lives in the land of kings, Sweden.

Introduction

Smashing WordPress Themes is all about making your WordPress site look beautiful. But, the beautiful part is a very personal thing, because
we all have different preferences. So in essence, my book isn't on Web design, but rather about giving you, dear reader, the tools to build the
kind of site that you want to create, using WordPress elements.

A theme is the skin of your WordPress content, your site template so to speak. A huge community of people design and use themes, offering
many high-quality designs. With this book, you can now contribute to that community.

As with my previous book, Smashing WordPress: Beyond the Blog, this book mainly targets those of you who know a bit about Web
development already. If you know some HTML, PHP, CSS, or have fiddled around a bit with WordPress, then this book is for you. If that sounds
like Greek to you (or any other language you may not understand), then you should read up a bit before you tackle this. But because even more
experienced Web developers need a quick recap at times, you all may find this book a welcome reminder of existing features.

As lwrite this book, WordPress has reached version 3.0.1, and is rocking the publishing world. Some of the code in this book is based on
themes that are available online, but since the Web is an ever-changing entity, the online code may be somewhat different from the examples
that you see in this book. Just keep that in mind if things suddenly don’t seem to add up.

You can dowinload the example code files from the companion Web site for this book at
www.wiley.com/go/smashingwordpressthemes.

Before | wrap this up and let you get started with WordPress theming, here are a few links that you may find interesting.

+» Code snippets for this book are available at my Web site at http: //tdh.me. Go to Smashing WordPress Themes under “Books.” (The
companion Web site for this book at www.wiley.com/go/smashingwordpressthemes also contains all the code.)

* Everything Notes related, including themes, plugins, code examples, and so onis available at http: //notesblog.com.

* The official WordPress manual, The WordPress Codex, is at http://codex.wordpress.org.

You can also become a fan on my Facebook business Page at http: //facebook.com/tdhftw — and follow @tdhedengren on Twitter for
the latest from yours truly.

Right! So let’s build some cool themes! Welcome to Smashing WordPress Themes: Making WordPress Beadutiful. | hope you'll enjoy the ride.
To properly convey this information, this book is divided into four parts.

Part 1: What Are WordPress Themes?

WordPress themes are what make your Web site look good and function well. They are the visual skin, the look and design of your site, what
your visitors will see. On the outside, your WordPress site looks and behaves like any other Web site, basically — just working better and
looking more gorgeous, hopefully.

The inside of a theme is a completely different beast. It contains stylesheets, template files, and — to the outsider — weird mumbo-jumbo code.
You'll find that your theme files are powerful tools that help you control your site’s function. It is not just visual bling; it is the actual code that
makes it tick, residing on top of the WordPress software platform.

PART II: Hacking a Theme

Just because you're a grand WordPress theme superstar designer doesn't mean you can’t look at, and perhaps even use, other people’s
themes. In fact, that is one of the best ways to learn theming, because you'll get new ideas and find new approaches to problems and situations
that you may not have encountered otherwise. It is easy to get caught in the “I have to do everything myself’ maelstrom.

You should take advantage of the vast themes community out there in cyberspace. So, | dedicate Part Il to working with themes that you have
not built yourself.

PART Ill: Building Your Own Theme

If you want complete control over your WordPress site, build your own theme. Not only does building your own theme make it easier for you to
achieve your goals, it is often the best way to keep your site lean and focused on its purpose. After all, while other theme designers may have
done a great job building a theme that you can use, the parts of that theme that don’t fit your goals will need reworking in some way.

InPart lll, 1 focus on building original themes, with concrete examples and ideas for you to take with you to your own projects. Consider the
practical examples as food for thought on how you can solve your own problems as you build your theme, and take inspiration from the solutions
herein.

PART IV: Taking Themes Further

Whether you create your own theme from scratch, or use and modify someone else’s work, sometimes you still do not get the effect you want for
your Web site. That's when the wonderful world of WordPress plugins comes into play. You can write your own plugin for release to the
WordPress community (for major stuff), or just put it in own your theme’s functions.php (for smaller features). Or, simply download someone

else’s plugin, and save a lot of time.

In this part, I look at the various ways to use plugins to further enhance your WordPress site.

Part I: What Are Wordpress Themes?

Chapter 1: Getting Started with WordPress
Chapter 2: This is a Theme

Chapter 3: Digging into the Twenty Ten Theme

Chapter 1: Getting Started with WordPress

WordPress is a most extraordinary beast. Not only can you run just about any Web site using WordPress as a content management system
(CMS), itis also so very easy to get started with. Gone are the days when installing a publishing platform is a bore and a hassle. With quality
open-source software, such as WordPress, suddenly you are the one doing the install, not an expensive Web agency or T consultant.

With WordPress, anyone can get into online publishing. All you need is a domain name and a compatible Web host, and then you're ready to
begin.

In this chapter you start by installing WordPress and reviewing a few basics about this software system. | discuss the content of theme folders,
and briefly describe the use of posts and Pages, custom taxonomies, and custom posts.

Later in the book, you move on to actually hacking an existing theme, and even build one of your own. Welcome to the wonderful world of online
publishing, WordPress-style!

For advanced WordPress programming professionals, go to Part Ill to build your own WordPress themes.

Installing WordPress in Just Five Minutes

WordPress prides itself on something they call the five-minute install. Truth is, it rarely takes five minutes to install WordPress, it is usually a lot
faster. But sure, if you consider download time and if your Web host is a slow one, then five minutes may be accurate.

While this book assumes that you know a thing or two about WordPress, it makes sense to go over the install just to be thorough. So here it is;
how to install WordPress.

Running WordPress Using a Web Host

First, find a Web host that meets the WordPress software requirements. The host needs to run PHP and MySQL, and preferably Apache or
Nginx as well, so that you can get permalinks out of the box without any tweaking. Most decent Web hosts will do, but you should go to
http://wordpress.org/about/reguirements to check the latest needs for the current WordPress version, just in case. Ask your Web
host if you're uncertain (see Figure 1-1 to download the WordPress software files).

8006,

/' (7)WordPress » Blog Tool and P » |

&)

« > C #© ﬁhnp:f{wordpress.org; » O F-

Go 1

@WORDPRESS.ORG

Home Showcase Extend About Docs Blog Forums Hosting

WordPress is web software you can use to create a beautiful
website or blog. We like to say that WordPress is both free
and priceless at the same time.

s Add New Post

Fascinating Adventures in Theme Desic

-

Permalink: http:/fexample.com/2010/07 /fascinating-design/ | Edit The core software is built by hundreds of community volunteers, and
when you're ready for more there are thousands of plugins and

Upload/insert [E] B0 A themes available to transform your site into almost anything you can

B|7 |= |i2]iz « === % =3 imagine. Over 25 million people have chosen WordPress to power the

place on the web they call "home" — we'd love you to join the family.

Ready to get started? Download WordPress 3.0.1

It's finally here, the theme you've all been waiting for!l

WordPress is also available in Svenska.

WordPress Books News From Our Blog It's Easy As... WordPress Users

WordPress 3.0.1 Find a Web Host and get great hosting

After nearly 11 million downloads of WordPress while supporting WordPress at the MARTHASTEWART A

3.0 in just 42 days, we're releasing WordPress same time.

Figure 1-1: Download the WordPress software files at wordpress.org/download

Second, you need to set up everything with your Web host. That means that you need to set up a MySQL database and a user with read and
write privileges. How you do this will depend on your Web host, so consult their control panel or ask the support staff. Just keep the database
name, and the username and password handy; you need them to install WordPress.

Now you can get started! Download the latest software version from http: //wordpress.org/download. | start by going over the hands-on,
edit-everything-yourself install, and then | get to the WordPress guided steps. Start by opening wp-config-sample.php. Find these lines:

// ** MySQL settings - You can get this info from your web host ** //
/** The name of the database for WordPress */

define (‘DB NAME’, ‘database name here’);

/** MySQL database username */

define (‘DB USER’, ‘username here’);

/** MySQL database password */

define (‘DB _PASSWORD’, ‘password here’);

/** MySQL hostname */

define (‘DB _HOST’, ‘localhost’);

/** Database Charset to use in creating database tables. */
define (‘DB _CHARSET’, ‘utf8’);

/** The Database Collate type. Don’t change this if in doubt. */
define (‘DB_COLLATE’ , M)

This is where you add the database information: the database name, the username, and the password. In some cases, you'll need to swap
localhost for a database server if your Web host has one of those. Again, consult your Web host if you're uncertain.

This is how it could look when filled out:

// ** MySQL settings - You can get this info from your web host ** //
/** The name of the database for WordPress */

define (‘DB NAME’, ‘swpt WordPress’);

/** MySQL database username */

define (‘DB USER’, ‘kingofkong’);

/** MySQL database password */

define (‘DB _PASSWORD’, ‘Xgg%4ZZ89QwC’) ;

/** MySQL hostname */

define (‘DB HOST’, ‘localhost’);

/** Database Charset to use in creating database tables. */
define (‘DB CHARSET’, ‘utf8’);

/** The Database Collate type. Don’t change this if in doubt. */
define (‘DB COLLATE’, ‘');

Now, while that would do it, you should be sure to get the necessary secret keys to help prevent malicious use of your software. You can find
these lines in the wp-config-sample.php file:

/**HR+
Authentication Unique Keys and Salts.

You can generate these using the {@link https://api.wordpress.org/secret-key/l.1/salt/ WordPress.org secret-key service}
You can change these at any point in time to invalidate all existing cookies. This will force all users to have to log in
again.
*

*
*
* Change these to different unique phrases!
*
*

* @since 2.6.0

*/

define (‘AUTH KEY', ‘put your unique phrase here’);
define ('SECURE AUTH KEY’, ‘put your unique phrase here’);
define (‘LOGGED IN KEY', ‘put your unique phrase here’);
define (‘NONCE KEY', ‘put your unique phrase here’);
define (‘AUTH SALT', ‘put your unique phrase here’);
define ('SECURE AUTH SALT’, ‘put your unique phrase here’);
define (‘LOGGED IN SALT', ‘put your unique phrase here’);
define (‘NONCE SALT’, ‘put your unique phrase here’);

Now, open your favorite Web browser and goto https://api.wordpress.org/secret-key/1.1/salt. Here you'll get some random lines
of secret keys (as you see in Figure 1-2), different keys with each browser reload. Copy these, and replace the lines in the wp-config-
sample.php file. The results could look something like this:

/**he+
Authentication Unique Keys and Salts.

You can generate these using the {@link https://api.wordpress.org/secret-key/l.1/salt/ WordPress.org secret-key service}
You can change these at any point in time to invalidate all existing cookies. This will force all users to have to log in
again.
*

*
*
* Change these to different unique phrases!
*
*

* @since 2.6.0

*/

define (‘AUTH KEY', /4t .1}GnupQ (] XMS}606Qcv| .] t{K v[50DzU~|juF] | z2yoZ >Ya$riv)2R];Z');

define (‘SECURE AUTH KEY', ‘0S}v/wtac{N-YxX]b r6 W;cm2FWonA "2o0s|XbFz{M<Q;n|eSLrNEy}Ft2|0c|N");

define (*LOGGED_IN KEY', ‘rzUl=0s,qg?sFKgru] p=|Ur4 ;x0=hTZC-TWh@w cp2G2T=JFt3? + (0thNHwif2S|");
define (*NONCE_KEY', ‘3~Im%"2b3quR]31=0HxVib-h npIW4u$]BGgO03BgB?8%0@H} 76 TKLpl| ~X/!<xJ-") ;
define (‘AUTH SALT’, YXWLUAKA7SVEd Y | XE, SDh LkP]AvmB=-Aq (~wh.d5qlZ07@g C=H6#|C?0+q+5-87");
define (YSECURE AUTH SALT’, ‘KM=QrlFVvY>VEtkvw"vJZC/U#J}-11*BWLn nz+%8>6d-F=P1*sUxT6yNg[t6,4.");

define (‘LOGGED IN SALT’, ‘GW7z3!E@ rHQV#QPdA SE?KR3*YBnO. (,V<_ L O0L{O};k}",t)xQ|gN?wFR d=s");

define (*NONCE_SALT’, VI /R:TYW><?k? ogGp+N{ge+ () |y-F (JSEff&E#xMnH.0o|ulrDs=+Uy<A9 [FQPsxI’) ;
N . -
/ |] https://api.wordpress.org/s aar

& > | C| N 5% htps://api.wordpress.org/secret-key/1.1/salt/ e O F-
define('AUTH_KEY', '/4t7 .1}CGnupQ(]XMS}606Qcv| . 1t {K v[50D2U~|juF]|z2yoZ >YaSriv)2R];Z');
define('SECURE_AUTH_KEY', 'O0S}v/wtac{N-YxX]b_ré6 W;cm2FWonA_"2os|XbFz{M<Q;n|eSLrNEy}Ft2|0c|N');
define('LOGGED_IN_KEY', 'r2ZU|=os,qg?sFKgrulp=|Ur4; x0O=hTZC-TWheéw ep2G2I=JFt3? 4+ (0thNBwif2$|"');
define('NONCE_KEY', '3~Im%"2b3quR]3i=0HxVib-h npIW4ut |BGg03BgB?8%0EH} T6TKLpl | ~X/1<xJ-");
define('AUTH_SALT', 'XWLUdK"7SvEd"™ | XE, SDh™LkP JAvmB=-Aqg(~wh.d5glZo78g C=H6#|C?0+g+5-82");
define('SECURE_AUTH_SALT', 'KM=Qr1FVVY>vEthW‘VJZC/U*J}-il*BWLn‘nZ+%B>6d-P=Pl*SUxT6yNg[t5,4.');
define('LOGGED IN SALT', 'GW7z3!E@ rHQu#QPdA SE?KR3*YBnO." (,V< L OL{O};k} ,t)xQ|gN?wFR d=s");
define("NONCE_SALT', '| /R:TYW><?k? ogGp+N{ge+()|y-F(JS$Eff&E#xMnH.o|ulrDs=+Uy<A9[FQPsxI"');

Figure 1-2: The secret keys change with every reload

Finally, you may want to change the default language. 'm Swedish, so | usually launch blogs in Sweden in my native language. A listing of all
language files are available at http://codex.wordpress.org/WordPress in Your Language inthe WordPress Codex. | save these
language files for later, and then upload them with all the other WordPress files. For now, all I need to know is the language code. For Swedish,
itis sv_SE, as | can see from the language filenames listed on the Codex page.

To change the default language, find this section of code:

/**

* WordPress Localized Language, defaults to English.
*
* Change this to localize WordPress. A corresponding MO file for the chosen
* language must be installed to wp-content/languages. For example, install

* de.mo to wp-content/languages and set WPLANG to ‘de’ to enable German

* language support.

*/

define (‘WPLANG’, ‘');

All I need to do is type my language code so that WordPress knows to swap the default English language with the one that | pick. After | set the
install to use Swedish as the default language, the rest of the process will be in Swedish.

* *

WordPress Localized Language, defaults to English.

Change this to localize WordPress. A corresponding MO file for the chosen
language must be installed to wp-content/languages. For example, install
de.mo to wp-content/languages and set WPLANG to ‘de’ to enable German

* language support.

*/

define (‘WPLANG’, ‘sv SE’);

R

When you're done, change the filename from wp-config-sample.php to wp-config.php. The sample filename is just a sample, after all.
For more information about localization, see Chapter 6.

But wait! Sometimes all these steps are completely unnecessary. If your host supports it, you can just upload WordPress (which you'll do in the
next step, otherwise) and point your Web browser to your URL. A guide takes you through the process. You basically fill out the database
details, and that's that. However, you can’t change the language this way, so it helps to know your way around the wp-config.php file!

Not everyone feels confident installing WordPress using the Web browser, especially since it involves sending your MySQL username and
password unencrypted. It is safer to do the edits in wp-config-sample.php, rename it to wp-config.php, and then upload it using FTP with a
secure connection (which your host needs to support). Otherwise, someone could sniff your online traffic and pick up your database username
and password.

Now upload the whole thing. Open up your favorite FTP client (if you don’t have one, just get Filezilla from http://filezilla-project.orq)
and connect to your Web host. (If that sounds like Greek to you, consult your Web host for help.)

When connected to your Web host with FTP, find the folder in which you want to install WordPress. Upload the WordPress files within the
wordpress folder, which you got from http: //wordpress.org. If you changed the default language in wp-config.php, you'll also want to
upload the language file. Create a folder called 1anguage in wp-content, and upload the language file to that folder.

After all the files are uploaded, you can install WordPress. Just point your Web browser to the folder where you installed the WordPress files,
and you are asked to fill in a name for your blog, as well as the contact e-mail address. Click the Next button and you get an admin username
and a password. Now, click the Finish button and then you log in. Do that with your admin username and password, and there you go: you've
installed WordPress!

You'll want to review each option in the Settings part of the WordPress admin panel. Just start from the top and make sure that you activate
permalinks, since it looks better and search engines like them. | get to the ideal settings later in this chapter, so either wait until then or set
everything up the way you see fit for now.

Did it take five minutes? | bet less. Reading this section definitely took longer than installing the software, didn't it?

Running WordPress Locally

You don’t actually need a Web host to start using WordPress, at least not for your own testing and development purposes. All you need is a
local server environment that is WordPress-compatible, which is a breeze these days. Long gone is the need for an old Linux server in the
closet. Instead, you can run WordPress on your Mac or PC using MAMP (that is, Mac, Apache, MySql, and PHP, Perl, or Python) or WAMP
(that is, Windows, Apache, MySql, and PHP, Perl, or Python) respectively.

In fact, although several ways exist to run the program locally, both MAMP and WAMP are free to download and use, so | focus on those to get
you started.

Setting Up MAMP for your Mac
MAMP is the best solution for running Web sites locally on your Mac. It is free, although there is a Pro version available (and included in the
download as well), and it is very easy to use.

First, go to www.mamp.info to download the MAMP package. After you download the software, you have the option to install MAMP or MAMP
PRO — you want the former unless you want to pay more for some reason. Just install it like you always do on a Mac, by dropping the program
inApplications.

Next, launch MAMP (for the Mac installation, see Figure 1-3), which is in Applications/MAMP unless you've installed it elsewhere.

L) MAMP

MAMP

managc your wcosi te locally

([Test MAMPPRO)

Status

Stop Servers

&

@@ Apache Server

Open start page

&a

PP MySQL Server

)
)
Preferences...)
)

(Quit

Figure 1-3: Use MAMP to run a Web site locally on your Mac

You might want to go through the settings, but in most cases you can just leave it. It works out of the box. Only change these settings if you know
you need to do something particular to your computer setup.

One thing you might want to change is where the htdocs folder is located. This folder is your local server root, so to speak. Because itis
located under the MamPp folder by default, you may want to move it somewhere else; this is entirely optional and managed in the MAMP settings.
You need to open the actual MAMP software to access these settings; there are no links or buttons to the settings panels from the Dashboard
widget (see Figure 1-4).

Stop servers

Open start page

e

.__“_p

' 4

ache

Figure 1-4: The MAMP Dashboard widget

The last thing you need to do, barring actually starting the MAMP server (which is done through the app, or the excellent Dashboard widget), is
to create a database for your local install. You'll find a link to PhpMyAdmin on the MAMP start page (Figure 1-5 shows where to create your
database), easily reached from the MAMP program, if you forget the URL or accidentally close it. Log in with your MySQL credentials, which
you'll find on the MAMP start page in your Web browser.

(& MAMP

€ || C| M dkh

X _@

ttp://localhost:8888/MAMP/?language=English

> O- ,-

PHP

Welcome to MAMP

If you can see this page, MAMP is installed
on your Mac and everything is working!

To see the PHP configuration, you can watch the output of phpinfo.

MysSQL

The MySQL Database can be administrated with phpMyAdmin.

To connect to the MySQL Server from your own scripts use the following connection

parameters:

Host
Port
User

Password

Example:

localhost
8887
root

root

$link = mysql_connect('localhost’', 'root', 'root');

or you can connect using an UNIX Socket:

Socket
User
Password

Example:

/Applications/MAMP/tmp/mysql/mysql.sock
root
root

Figure 1-5: The MAMP start page in your default Web browser

MAMP & MAMP PRO powered by appsolute GmbH

MAMP PRO: Configure an unlimited number
of Virtual Hosts, DynDNS, E-Mail...

Buy now

Updates
MAMP & MAMP PRO 1.9 released (with PHP 5.3)

MAMP & MAMP PRO 1.8.4 released
MAMP & MAMP PRO 1.8.3 released
News

First Moments with MAMP

There is a great screencast by Chris Coyier on "First
Moments with MAMP", Check it out!

HowTo: Create a local environment using MAMP

The team of drupal.org wrote a great step by step
tutorial "Create a local environment using MAMP". Many
thanks! Check it out!

New Online Documentation for MAMP & MAMP PRO

We have just finished the transition of the MAMP PRO
PDF-based documentation into an online version. Some
entries have been updated others have been added. We
also started to add a documentation for the free MAMP,

< »i

In PhpMyAdmin (see Figure 1-6), just create a new database by giving it a name, and then click the Create button.

800 N
J Gumame x L

€& > C M i http://localhost:8888/MAMP/?language=English » O~ F-

MAMP & MAMP PRO powered by appsolute GmbH

e

w 8 m Zd localhost

o QO _(giDatabases ,7}SOL ¥pStatus (5] Variables [fT|Charsets [jjEngines g3 Privileges & Processes [iExport [ulmport
* information_schema (28) Actions MySQL
+ mysql (23) =
o test MySQL localhost 3 server: Localhost via UNIX socket
: :g; ﬁ:g A &3 server version: 5.1.37
« wp3 (11) = Crosle new duishese . . » Protocol version: 10
‘MancaIWordPressl | |_Collation —ﬂ (_Create » User: root@localhost
Please select a database MySQL connection collation: | uti8_general_ci 3 MySQL charset: UTF-8 Unicode (utf8)
Interface Web server
) - - » Apache/2.0.63 (Unix) PHP/5.2.11 DAV/2
%" Language @: [English) » MySQL client version: 5.1.37
& Theme/ Style: [original [:] » PHP extension: mysql
» Custom color: £ Reset) phpMyAdmin

» Font size: | 82% |4 g .
» Version information: 3.2.4

E? Documentation
& wiki
4 official Homepage
» [Changelog] [Subversion] [Lists]

php

Figure 1-6: PhpMyAdmin home page

That's it! Now you can install WordPress just like you would if this were a normal Web server. Just copy the WordPress files where you want the
install, under htdocs obviously, and then install it like you usually do.

Setting Up Wampserver for your PC
WampServer is one of several WAMP solutions for Windows PCs. Just like MAMP, it is free to use and simple to install and manage. (As you
can see in Figure 1-7, | have the French version.)

To download the WampServer software, go to http: //www.wampserver.comn. ltis released under the GPL license and comes as an
executable installer file (a dot EXE), so no worries there. Just download it and install it wherever you want.

After you install (and launch, obviously) the software, you see a menu icon on the bottom right of your screen, which gives you access to your
Wampserver settings and files. So if you need to hack the php.ini file, for example, you can get to that quickly from here. It is actually pretty neat
the way the Wampserver is always at your disposal in this way. What you want to do for now, however, is launch your localhost default page
(unlike in Figure 1-8, you may launch your version in English).

3 ="7087
3 PHP Apache MySQL avec... » Yy _ i 1
&« C T hitp//www.wampserver.com, » O~ £~

&A) Den har sidan ar p3 | franska ~ | Vill du bversatta den? | Oversatt @ Alternative
WampServer

WV

RN

WampServer 2.0i [11/07/09]
Inclus :
= Apache 2.2.11

- MySQL5.1.36
-PHP5.3.0

changelog

- Formation PHP Niveau 1
- Formation PHP Niveau 2
- For i Zend Fr k
- Les autres formations ...

S
X
N
3
2

Pour &tre prévenu de 'actualité de
WampServer (et uniquement de

= cela), entrez votre adresse email :
Ajoutez Développez dans un

optionnell envire
d‘autres versions de identique a votre
Apache, PHP et MySQL serveur de production.

Téléchargez la
derniére version de
Wampserver 2

“Sl:kh‘

WampServer 2 est /a nouvelle version de WAMFS. WAMFS n'est actuellement plus
développé mais les anciennes versions peuvent toujours étre téléchargées sur fe
— — —————

Figure 1-7: Get Wampserver for free for your PC

—
7 WAMPSERVER Homepage

C ¥y http//localhost » O~ F~

s

Version 2.0 Version Francaise

Server Configuration
Apache Version : 2.2.11
PHP Version : 5.3.0

Loaded Extensions : i Core & bemath = calendar M com_dotnet & ctype
* date e ereq o filter o ftp ¥ hash
& iconv & json merypt ¥ mysqind P odbc
o pere ¥ Reflection & session = SPL ¥ standard
3 tokenizer & zip = zlib e libxeml & dom
% PDO & Phar & SimpleXML e wddx e xml
o xmireader P xmiwriter & apache2handler W ad ¢ mbstring
& mysql & mysqli 2 pdo_mysql # pdo_sqlite & mhash
MySQL Version : 5.1.36
| Tools
#” phpinfo()
| #” phpmyadmin
Your Projects
Your Aliases
« phpmyadmin

WampServer - Donate - Anaska

Figure 1-8: The localhost default page

After you launch your Web browser and the localhost page, you can gain quick access to the most necessary information. You can find
PhpMyAdmin (to install WordPress on a PC, see Figure 1-9), as well as the phpinfo page, which displays what's running in a nifty manner.
PhpMyAdmin works just as it does under MAMP, so all you need to do is to create a database and go from there.

/ Ay localhost / localhost | ph...

(" c 'i:f 1ty '_'|Oca|hOS‘E phpmyaamir dex.php | 3 B' "

mjww,mﬂn @3 Server: localhost
o (2 Wia] {@Databases 7 SQL ¥ Status E)Variables [fT|Charsets EiEngines 3 Privileges [Binary log 4yProcesses
fGaExport Talmport
» information_schema (28)
¢ mysql (23) Actions MySQL
S MySQL localhost £3 Senver: localhost (MySQL host info: localhost
via TCP/IP)
© Create new database 23 Server version: 5.1.36-community-log
WordPresslLocal Collation Z| Create | » Protocol version: 10
MySQL connection collation: | (tf8_general ci [~ b User: root@Iocalhost

MySQL charset: UTF-8 Unicode (utf8)
| Interface

Web server
& Language @ English [~] » Apache/2 2 11 (Win32) PHP/5.3.0
@& Theme / Style: | Original E] » MySQL client version: mysglnd 5.0.5-dev -
081106 - SRevision: 1.3.227
» Custom color: @ Reset | » PHP extension: mysqli
» Font size: |82% [+] phpMyAdmin

» Version information: 3.2.0.1

E) Documentation
Wiki
&t official Homepage
» [Changelog] [Subversion] [Lists]

php

(@) The additional features for working with linked tables have been deactivated. To find out why click here

A Your configuration file contains settings (root with no password) that correspond to the default MySQL privileged account. Your MySQL
server is running with this default. is open to intrusion, and you really should fix this security hole by setting a password for user "root".

= Open new phpMyAdmin window

Figure 1-9: PhpMyAdmin, again

Where you actually store your files depends on how you've set up Wampserver. Just look for the Wampserver icon on the bottom right of your
screen to find your way. That's about all there is to it!

What About Linux?

As one might guess, there are many options for running a local server under Linux, including the popular LAMP package (Linux, Apache,
MySQL, and PHP). If you have Linux installed, chances are that you've already got it under the hood, which actually is true for Mac OS X, as
well. If you know what you're doing, you can just use Apache, MySQL, and PHP without relying on any MAMP or Wampserver-like software, but
otherwise turn to Google (or any other search engine) to find a solution that fits your Linux distribution of choice.

Fine Tuning Your WordPress Settings

You can adjust the site settings in the WordPress admin panel, more specifically in the options found under Settings in the left column. After
completing the installation, you may want to take a closer look at them. Go over them all and set up your site according to your needs, with time
zones and whatnot. Some of the settings are a bit more important (that is, more crucial) than others, so let’s take a closer look at those.

Permalinks

First, be sure to enable the permalinks feature, which tells WordPress how the URLs for your posts and Pages will look. You find these settings
under Settings, and then Permalinks (Figure 1-10 shows the Permalink Settings screen located in the admin panel). Your actual setup is up to
you; just pick settings that you feel make sense. Many theories exist as to what leads to the best rankings in search engines like Google, but |
stay clear of those in this book. Research for yourself, but in short, make sure that the post name is in the permalink. See the Codex page on
permalinks for more funky options than the suggested defaults: http://codex.wordpress.org/Using Permalinks.

ene - : —
y Permalmk Settings < Notes W

&« 25> C M %/ http://notesblog.com/wp/wp-admin/options-permalink.php » O~ F-

11| Permalink Settings

- By default WordPress uses web URLs which have question marks and lots of numbers in them, however WordPress offers you the ability
rﬁ to create a custom URL structure for your permalinks and archives. This can improve the aesthetics, usability, and forward -compatibility
of your links. A number of tags are available, and here are some examples to get you started.

o Common settings

) O Default http://notesblog.com/?p=123
= ODay and name http://notesblog.com/2818/88/@9/sample-post/
&0
s OMonth and name http://notesblog.com/2010/08/sample-post/
‘,‘ii (O Numeric http://notesblog.com/archives/123
T4
@ Custom Structure /#year¥/%postname¥/
:
Optional

If you like, you may enter custom structures for your category and tag URLs here. For example, using topics as your category base
would make your category links like http://example.org/topics/uncategorized/ . If you |leave these blank the defaults will be used.

Category base category

-
Tag base tag
Save Changes

Figure 1-10: The Permalink Settings screen found on a WordPress site

It's worth mentioning here that for the permalink settings to work you need to be able to write to the .htaccess file on your Web host. If
WordPress can write to the server, it will create an .htaccess file for you; otherwise, you'll have to do it and make it writeable. If this sounds
scary, just follow the instructions on-screen should WordPress not be able to save to the .htaccess file. You'll get a box with the necessary code;
just copy and paste itinto a text file. Upload that to your WordPress directory (where you've got wp-config.php, among other things); rename it
.htaccess, and you'll be fine.

Media Settings and the Upload Folder

The Media settings are important since they tell your WordPress install how to scale images and manage embeds in your theme. Every image
that you upload though the media manager in WordPress, whether it is when writing a post or from the Media Settings screen in the admin
panel, is actually saved in up to three sizes. First, there’s the thumbnail, which is a small, cropped thumbnail-size version of the image. Then
there’s the medium-size image, and a large-size one, which are both uncropped versions of the original image, scaled down. These three
image sizes are scaled according to the settings on the Media Settings screen (Figure 1-11 is where you specify image dimensions). Make
sure that they fit your site. For example, the medium-size image could be used on some Pages where the amount of space is limited, while the
large image is the full width available. Take these sizes into consideration when designing your own themes in the future.

Obviously the original image, the one you uploaded, is saved in full size as well. You can add more sizes with themes and plugins, so you're in
no way limited to these three sizes. Should the original image be smaller than, say the large image, you won't get one of those, obviously.
WordPress only scales down images, never up, since the scaled-up images look bad.

I Media Settings

Image sizes

The sizes listed below determine the maximum dimensions in pixels to use when inserting an image into the body of a post.

Thumbnail size Width 150 Height 150

E Crop thumbnail to exact dimensions (normally thumbnails are proportional)

Medium size Max Width 300 Max Height 300
Large size Max Width 1024 Max Height 1024
Embeds
Auto-embeds EAttempt to automatically embed all plain text URLs
Maximum embed size Width Height 600

If the width value is left blank, embeds will default to the max width of your theme.

Figure 1-11: Media Settings located under Settings in your admin panel

Finally, under the Miscellaneous settings, also found under Settings in the admin panel, you can decide where you want your uploads stored.
Usually you won'’t touch this, but sometimes you may need it. Take a look and remember that the folder that you specify needs to be writable so
that WordPress can save your images there. If you ever get an error that your uploads folder isn’'t working, check these settings.

Other noteworthy Settings

Also check out the General, Writing, Reading, Discussion, and Privacy settings under Settings in the admin panel. The General Settings allow
you to change your WordPress tagline, “Just another WordPress site,” which may not be what you want to convey. The settings for dates, e-
mail, and things like that are all pretty straightforward.

The Reading and Writing settings let you specify how many posts to show per page, whether the front page displays your latest posts or is a
static Page, and so on. The Discussion settings page contains information for your comment sections, such as if you allow threaded comments,
avatars, and things like that. You can also hide your site from search engines in the Privacy settings. Again, these settings are pretty
straightforward, so dig in and get yourself acquainted with your options.

Shameless Self Promotion

For more on the WordPress install, consult the Codex (http://codex.wordpress.org) . You might also want to get the book Smashing
WordPress: Beyond the Blog (Wiley Publishing, Inc.), which discusses the install in detail and talks more about securing it, moving it to a
different folder, and related items. Incidentally, it is written by yours truly!

WordPress Theme Files

This book is all about themes, and as such it is important that you get the lingo right from the start. Since you're a WordPress user, you already
know that a theme is something of a skin for your WordPress site, containing all the styles necessary to make it look great. The theme can also
contain functionality normally associated with plugins, but that's a different matter.

Your theme resides in the themes folder, found within the wp-content folder, which sits in the root of your WordPress install. Every theme has
its own folder, and that theme folder contains a stylesheet, template files, and possibly images and other files needed. The stylesheet is

mandatory, the template files are usually necessary, and the rest is icing on the cake (view the theme folders in Figure 1-12). So the essential
WordPress theme files are, as follows:

- Stylesheet file: Defines the appearance of your theme
» Template file: Outputs your content to your Web site

* Functions.php file: Allows you to add other new features (such as widget areas)
« Other files: Includes images (such as JPEGs) or Java Scripts, for example

Your stylesheet file is named style.css and contains the theme information at the top, in a predetermined format unique to WordPress. Other
than that, style.css is a regular stylesheet and you use it as such. That means you can style your links, set your fonts, and do all those things
here, or at least import other stylesheets where you do so if you want to put everything in its own stylesheet. The important thing is that your
style.css, the primary stylesheet file, contains the theme information.

The template files are PHP files containing the code that outputs content from your WordPress site. The code is a mixture of PHP, HTML, and
the WordPress template tags, which in turn are PHP themselves. | get to that later. What's important is that you know that template files are
PHP files used to output your content. That means that the index.php, header.php, footer.php files, and so on in your theme are template files.

OO (mt))
L PO~ @ oo
View Action New Folder Refresh Preview Synchronize Sidebar Disconnect Stop Search
| (] Webbsidor ‘:] la »! (L] twentyten +ad (€| »)
Name A Size Date Name A Size Date
.DS_Store 6 KB 2009-06-13, 13.05.02 & 404.php 841 B ons den 11 aug 2010, 14.27.00 T
Jlocalized 0B 2009-05-10, 00.35.29 & archive.php 2 KB ons den 11 aug 2010, 14.27.00 :
(] BuddyPress -~ 2010-03-05, 19.28.33 & attachment.php 5 KB ons den 11 aug 2010, 14.27.00 !
] images -- 2009-05-10, 00.35.29 & author.php 2 KB ons den 11 aug 2010, 14.27.00 ||
index.html 3 KB 2009-05-10, 00.35.29 & category.php 928 B ons den 11 aug 2010, 14.27.00 |}
] MAMP -- 2010-03-11, 20.40.55 & comments.php 3 KB ons den 11 aug 2010, 14.27.00 |}
(] wordpress.2.8 -- 2009-06-11, 20.52.08 editor-style-rtl.css 710 B ons den 11 aug 2010, 14.27.00 |}
|] wordpress.2.9.2 -- 2010-02-15, 19.04.48 editor-style.css 3 KB ons den 11 aug 2010, 14.27.00 ‘
(] wordpress.3.0-alpha -- 2010-03-11, 20.41.20 ' & footer.php 1 KB ons den 11 aug 2010, 14.27.00 :
(] wordpress3.0.1 -- 2010-07-29, 21.56.18 @ functions.php 18 KB ons den 11 aug 2010, 14.27.00
& header.php 3 KB ons den 11 aug 2010, 14.27.00 nL
[] images -- ons den 11 aug 2010, 14.27.00
& index.php 884 B ons den 11 aug 2010, 14.27.00
(] languages -- ons den 11 aug 2010, 14.27.00
=) license.txt 15 KB ons den 11 aug 2010, 14.27.00
loop.php 8 KB ons den 11 aug 2010, 14.27.00
& onecolumn-page.php 1 KB ons den 11 aug 2010, 14.27.00
naae.nhn 1 KR nns den 11 aua 201014 27 .00
your stuff. (10 items) their stuff. (26 items)

Status: |dle %

Figure 1-12: The default WordPress TwentyTen theme’s folder as seen via FTP

Functions.php is one PHP file that is a little different from the others. This little file doesn’t display any particular Page or part of your WordPress
site (unless you count pages in the admin area, which can be created from functions.php), but rather contains plugin-like functionality, your
widget declarations, and related items. In short, while functions.php is a template file, it is also primarily used to add features that you can use
globally across your theme.

As | said, the rest is icing on the cake. Most themes contain images, some have JavaScript files, and so on. A theme can contain just about
anything that you need, so it isn’t limited to the stylesheet and the template files. It is also worth noting that while your theme must reside ina
folder in wp-content/themes, the theme folder itself can have subfolders. That's handy if you want to put images in one place, stylesheets (but
not style.css) in another, and so on.

WordPress As a CMS

As a regular WordPress user, you may already know how to publish posts and Pages, change current themes and install new ones, and
activate plugins. You can drop widgets in their widget areas, and add users with the appropriate capabilities. If you feel uncertain of any of this,
you should play around with your WordPress install, publish some posts and Pages, swap a few themes, and use some widgets.

But while a lot of us use WordPress for traditional blogging, you can clearly do a lot more than that. The evolution of the platform is stunning, and
you'll soon find that mere blogging is the simplest form of WordPress usage. (Maybe static corporate sites are even simpler, but that really
doesn’t matter.)

What | want to do is plant the thought that WordPress is a lot more than a blogging platform. It's a CMS, and with WordPress 3.0 or later and the

addition of custom post types (which I get to in a little bit), it gets a lot easier to do cool stuff with the platform.

Don't think too much about WordPress’ blogging past. It is still a great blogging platform, but it can be so much more. A community, the basis
for an e-commerce site, a photo portfolio, a newspaper, an online magazine All it needs is for you to create the themes for it.

For several versions the WordPress developers have been able to build pretty advanced Web sites using WordPress. That's nothing new, but
with the change of the default “Just another WordPress blog” tagline to “Just another WordPress site,” both the developers and the platform are
telling us that this is something more than just blogging. If you read my book Smashing WordPress: Beyond the Blog this is old news to you.
I've already shown you that you can build many types of sites with WordPress, and | continue doing that in this book as well.

Posts, Pages, and New Custom Post Types

As you know, the two primary types of content in WordPress are posts for your typical blog, and Pages, which in the same typical blog is the
static content, such as About and Contact pages. Note that Pages is spelled with a capital P; this is to make it clear that it is the Pages in the
context of WordPress that is intended, and not a regular page on a Web site.

Posts are used with categories and tags (known as taxonomies), and are in the WordPress content flow (or loop). Posts are obviously ideal for
blog posts, but also for news, reviews, tips, and other kinds of content that are updated frequently. (By updated | really mean added to, since you
add more posts rather than update your current ones.)

Pages, on the other hand, lack both categories and tags, and are meant just for static content. The About page example on your typical blog
applies, as do contact information pages, staff listings, and things like that. Pages are more static; you create them, publish them, and then you
might update them once in a while, but that's about it. The idea is that Pages aren’tin the content flow in the sense that they show up on the front
page like posts traditionally do. Pages stand on their own.

When building WordPress sites you should always consider what parts of the site will be posts and what will be Pages. Need a news section?
That's probably a category with a bunch of news posts init. Want to publish a Google Map with the direction to your office? You should probably
do that on a Page since there’s no need to update it other than when you move.

Taxonomies

Categories and tags are both default examples of taxonomies, as they are ways to file your posts. Taxonomies only work with posts, not with
Pages, so you need to keep that in mind.

« Category: Hierarchical by nature. That means that you can add a category, and then add a subcategory should you want to. A post can
belong to several categories, or just one.

« Tag: Basically a keyword that you can add to your post. You type it in (or pick from the suggested ones), and that's it. Tags have no
relationship with each other; they just associate the post with the keywords you've added.

« Custom taxonomy: An archive distinct from categories and tags that function like tags, but maintain an individual presence.

Both categories and tags are great tools to create new parts of a site. A category called “News” shows all posts associated with it, which gives
you a news section. Tags, on the other hand, are better used to link posts together by niche topic, so if you have a bunch of news posts about
Google, for example, you'd tag them with “Google,” and hence you'll get an archive with all the posts tagged “Google.” Basic stuff.

However, you can also create your own taxonomies (Figure 1-13 shows my Artists taxonomy). Sometimes you need more filing options for your
posts, and that’s when you'll add new taxonomies, in addition to categories and tags. For example, say you run a music site and want to
separate the artists from your categories and tags, hence creating an artist archive. You can create a custom taxonomy called “Artists,” and tell
it to function as a tag. With a few lines of code you end up with a second tag box on the Edit Post screen named “Artists,” and you can tag away.
The tags in the “Artists” taxonomy are separate from the default tags, which means that you can use them for whatever needs you have. An artist
index perhaps?

Creating a custom taxonomy is easy. You just declare it in your theme’s functions.php, and then you can start using it. I'll show you how to do this
later on. For now you just need to know that you're not tied down to just the default categories and tags for filing your posts — you can add your
own rules.

Post Tags

Add
Separate tags with commas
Choose from the most used tags
Artists
\ Add
aries of your content that can be used in your theme. Learn more about Separate tags with commas
Alice Cooper Bruce Springsteen

Choose from the most used tags

Featured Image

Set featured image

Figure 1-13: A custom taxonomy box for artists on a new post

Custom Post Types

Custom taxonomies aren’t the only cool feature that can help you take control of your content. Another great tool for making WordPress easier
to use, both as a designer and in the backend, is custom post types (Figure 1-14 displays my custom Podcast post). Just as custom
taxonomies let you create new taxonomies in addition to the default categories and tags, custom post types let you define new kinds of posts.
Or, to put it simply, you can create an additional Posts menu in the WordPress admin panel called anything you like — Podcasts, perhaps —
and then create Podcasts posts init. These posts then can live their own lives on your site, or be included in the regular loop if you prefer.

What's even better, you can control what your new post types will support. Maybe you don’t want to be able to add custom fields or an excerpt to
your custom post type? Then you can remove these boxes. For you and me, this probably doesn’t matter much; we’re used to working with
WordPress and aren’t daunted by a custom fields box on the Edit Post screen. Less WordPress-savvy users, however, might find it stressful to
have a lot of boxes to fill with information, despite them not being needed.

Most, if not all, things you can do with custom post types are technically possible with the use of custom fields and a sensible category or
tagging setup. However, custom post types mean that you can create a more logical backend for your users, saving them from a bunch of fields
and decisions when they really just want to post content.

We use customs post types in projects in Chapter 9.

eNno

| Add New Post « LABE — Wo Wik
€ 9 C M v http://labb.cylinderlabs.net/wp-admin/post-new.php?post_type=podcasts > 0O K-
\ﬁj LAB6 Search Engines Blocked Podcasts v Howdy, tdh | Log Out
Screen Options Help
(3} Dashboard -~ Add New Post
o '
 Posts Hey look, it's a Podcast post! e
5 Media Permalink: http://lab6.cylinderlabs.net/?post_type=podcasts&p=5 | Change Permalinks Sl Dealy Breview
Z® Links Status: Draft Edit
Upload/insert = &8 £ & Visual .
(] Pages Visibility: Public Edit
= = = ey = =
B I & = = & =E =E =] A= 1 Publish immediately Edit

C]) Comments

57 Podcasts v

Podcasts

Add New

[0 Appearance

&7 Plugins

&, Users Path:

e Word count: 0 Draft saved at 8:26:24 am.

[} Tools

[37] Settings
Thank you for creating with WordPress. | Documentation | Feedback Version 3.0.1

Figure 1-14: Look at that, a custom post type called Podcasts

The WordPress Codex

Your best friend online when working with themes is definitely the WordPress Codex, located at http: //codex.wordpress.org. That's the
documentation wiki for WordPress, and while it is not perfect, it contains information on everything from theme files to template tags, and more
(Figure 1-15 shows you the Codex Main Page). If you need to know what a specific code snippet can do, you'll start there. For the basic stuff,
you'll find adequate descriptions of what this and that does, and nice lists of functions you can use and so on. However, as your needs grow,
you'll find that Google (or whatever search engine you fancy) is necessary. The Codexisn’t complete. ltis still the go-to place when it comes to
finding out what you can do with a specific template tag, for example, but you'll most likely not find every answer there.

If you want to you can help fill in the blanks, add examples to tricky parts, or in any other way help update the Codex. There’'s a WordPress
documentation team that most likely would love to get in touch with you, so get in touch with them if you'd like to help:
http://codex.wordpress.org/Documentation team.Justlike WordPress, the Codex relies on users to participate in the open-source

spirit.

Other than the Codex, you'll find great help on the WordPress support forums at http://wordpress.org/support. A lot of talented
WordPress users are participating there, and chances are someone else already had your problem, so a quick search might very well answer
your question.

8OO

' Main Page « WordPress Cod: x '} oh
ey

€ 2> C M 3% http://codex.wordpress.org/Main_Page

> D- &-

@ WORDPRESS.ORG

Home Showcase

Codex

Main Page
Getting Started with WordPress »

= New To WordPress - Where to Start
= [nstallation

= |nstallation Help

= Upgrading WordPress

= WordPress in Your Language
= Posting in WordPress

= WordPress for Beginners

= WordPress Lessons

= File and Plugin Management
= WordPress Plugins

= FAQ New To WordPress

WordPress 3.0 Information

= WordPress Version 3.0 Features
= |nstalling WordPress
= Updating WordPress

s« WordPress Support Forums

= WordPress Download

Extend About

Go
Docs Blog Forums Hosting

Codex tools: Log in

Home Page

WordPress Lessons
Certing Started
Working with WordPress
Design and Layout
Advanced Topics
Troubleshooting
Developer Docs

About WordPress

Codex Resources

Community portal
Current events
Recent changes
Random page

Help

Figure 1-15: The WordPress Codex

Wrapping It Up

Right, that's it for the basic stuff. You've got your install up and running, and an overview of theme files and how things work and relate to each

other.

In other words, it is time to get your hands dirty and dive into the themes themselves. To build themes you need to know about template tags, the
PHP code that WordPress uses to actually output something on the screen for your visitors. If the theme is the skin of a WordPress site, and the

template files within the theme is the skeleton, then the template tags are the organs that make everything work. Without them, you'll have no

posts or Pages. Sounds like something you need to know about, right?

Chapter 2: This is a Theme

The theme is what your visitors see, it is the skin for your content, the GUl and design of your Web site. Creating a nice-looking design is one
thing, translating it to something that WordPress can interpret is another. That is where the theme and its files come in.

This chapter is all about understanding the theme files, and then doing a few interesting things with them. It is the first step towards further
development of your own theme, really.

About Themes

I touch this briefly in Chapter 1, so you already know that your theme consists of at least one main stylesheet and some template files. The
template files are PHP files containing the code snippets that you need to display your site’s content. A few key template files are header.php,
index.php, sidebar.php, and footer.php. And the functions.php template file is a bit different from the other ones; it really isn’t displaying a part of
your site, but rather adds functionality to it.

« Stylesheet file: Defines the appearance of your theme, and contains the WordPress-specific theme declaration at the top
» Template file: Usually outputs your content to your Web site with the loop

« Functions.php file: Allows you to add other new features (such as plugins)
« Other files: Like images, Java Scripts, and so on

I rely on the Twenty Ten theme to show off these things in this chapter. Twenty Ten replaced the old default theme, formerly known as Kubrick, in
WordPress 3.0; the Twenty Ten theme now ships as the WordPress default theme. ltis a nice basis to start building WordPress sites on (see
an array of themes in Figure 2-1).

Appearance
Themes Available Themes

Widgets

Menus ComicPress

Background

Header

Editor

£4 Plugins - - - = (e
SMmbe

&, Users

T} Tools Y 2

o

[37] Settings

Acamas 1.0.2 by lan Stewart
Acamas brings clarity, elegance and power
to your WordPress experience—thanks to
the power of Thematic.

Activate | Preview | Delete

The template files are located in
[themes/acamas . The stylesheet files are
located in /themes/acamas . ACamas uses
templates from Thematic. Changes made to
the templates will affect both themes.

MYSTIQUE

ComicPress 2.9.2.22 by Philip M.
Hofer, Tyler Martin

Publish a comic with WordPress. Visit the
ComicPress Website. This is the ComicPress
Core Framework. Requires WordPress 3.0

Activate | Preview | Delete

All of this theme's files are located in
/themes/comicpress .

Tags: White, Two-Columns, Three-
Columns, left-sidebar, right-sidebar, fixed-
width, custom-header, theme-options,
threaded-comments, sticky-post,
translation-ready

Motion 1.0.7 by Sam @ 85ideas
Dark and colorful theme with sweet
transparency characteristics. Drop-down
categories menu, 2-column layout and
widget-ready footer and sidebar.

Activate | Preview | Delete

All of this theme's files are located in
[fthemes/motion .

Tags: black, blue, green, dark, two-
columns, sticky-post, threaded-comments,
fixed-width, right-sidebar

Figure 2-1: The Manage Themes screen in the WordPress admin panel

The loop is what really makes WordPress tick. With PHP, you use it to loop through and output content from the database. You'll find it in most
template files that are used to control content. | discuss the loop in more detail later in this chapter, and even further later in the book.

WordPress then knows what to output thanks to template tags. These are actually PHP functions that you can use in your theme to get the result
that you want. A lot of them are used within the loop, to output things like post or Page titles, the content, and so on. I go in depth with them later
in this chapter as well, especially when | start building themes of our own.

The Stylesheet

The stylesheet, or style.css, is the theme file that contains the information of the theme. WordPress reads the top part of this file to discern if the
files found in wp-content/themes are in fact a theme, or just some random nonsense. This is called the theme declaration.

Theme Declaration

The stylesheet, style.css, is necessary for WordPress to understand that your files are in fact a theme. In other words, you need style.css, and
you need this data at the very top of that file in this format:

/*

Theme Name: The Theme Name Goes Here

Theme URI: http://your-theme-url.com

Description: A description of your theme (basic HTML will work).
Author: Your Name

Version: 1.0

Tags: wordpress.org compatible tags

*/

Not all of this is necessary. The “Tags” partis for wordpress. org themes directory compatibility, for example. There’s more on making your
theme wordpress.org compatible later on. For now, let's just call it good form.

For comparison’s sake, here’s the theme declaration for the new default theme (as of WordPress 3.0), Twenty Ten. | get into that in greater
detail in Chapter 3.

/*
Theme Name: Twenty Ten

Theme URI: http://wordpress.org/

Description: The 2010 theme for WordPress is stylish, customizable, simple, and readable -- make it yours with a custom
menu, header image, and background. Twenty Ten supports six widgetized areas (two in the sidebar, four in the footer) and
featured images (thumbnails for gallery posts and custom header images for posts and pages). It includes stylesheets for
print and the admin Visual Editor, special styles for posts in the “Asides” and “Gallery” categories, and has an optional
one-column page template that removes the sidebar.

Author: the WordPress team

Version: 1.1

Tags: black, blue, white, two-columns, fixed-width, custom-header, custom-background, threaded-comments, sticky-post,
translation-ready, microformats, rtl-language-support, editor-style

*/

The theme declaration should always be at the very top of your style.css file. Underneath, you can put whatever you want, but this is necessary at
the top, otherwise WordPress won't get the information it needs (see the Twenty Ten theme in Figure 2-2).

The Epic Test Blog Just another WordPress site

Search
Layout Te ((search)
Posted on September 6, 2008 by Chip Bennett

Categories
This is a sticky post!!! Make sure it sticks! !

L] unthmu‘mmsm
arrangement
This should then split into other pages with layout, images, HTML tags, and other things. Asides
asmodeus
broder
buying
CatA
CatB
CatC

championship

chastening

clerkship

disinclination

Good Old Day

Posted on Se er 5, 2010 by tdh

disinfection
dispatch
echappee

Where lorem ipsum ruled, was a novelty, and kicked serious ass because no one knew

enphagy

Figure 2-2: The Twenty Ten theme packed with test content

Just put your regular styles under this, just like you would when using an external stylesheet file. It hardly needs to be said that using an external
stylesheet in WordPress is the way to go. Don't put the styles directly in header.php, or things like that, it is bad form.

Now, that doesn’t mean that you can’t have numerous stylesheets for your theme, it just means that one needs to be called style.css, and that it
is prudent to make this the main one. Some people prefer to have their CSS resets in one stylesheet, typography in another, and so on. That is
all a matter of taste. You could just as well have everything in your style.css file. Larger sites should be careful not to have too many stylesheets,
because you'll need to call them somehow, either in your style.css file or from the HTML header in header.php. Each call is an HTTP request
and this puts more strain on your system and could slow down your site. Splitting up your stylesheet into several files for development purposes
may be a good idea, although that is a personal preference and you should do what you feel most comfortable with.

The following features are some optional things you can do with style.css. They're optional, and help in various situations, so itis good to know
about them. For example, you don’t need to add tags meant for the wordpress. org themes directory if you have no intention of submitting your
theme, and so on.

Set tags for your theme

If your theme is included in the wordpress . org themes directory, then you can set tags for it in your styles.css file. These tags are predefined
and can be found in the theme submission instructions: http: //wordpress.org/extend/themes/about. Below is the part of the Twenty
Ten stylesheet that lists the tags for that particular theme.

Tags: black, blue, white, two-columns, fixed-width, custom-header, custom-background, threaded-comments, sticky-post,
translation-ready, microformats, rtl-language-support, editor-style

Define a child theme
In your style.css file, you can define a parent theme that makes your theme a child. | discuss this further in Chapters 3 and 4, but in short, you

define the theme that you want WordPress to consider as the parent of your own theme by adding its folder as a parent in your theme’s
style.css. This means that the theme will revert to its parent theme whenever it lacks something. So if the child theme doesn’t have a
sidebar.php template but a sidebar is called, it will use the parent theme’s sidebar.php instead.

When the child theme has a template, it take priority over the parent theme’s template file. This way you can maintain themes with minimal effort
if you've got a decent setup. In the following example, you're looking at a dummy theme that relies on the Twenty Ten theme as a parent.

/*
Theme Name: Dummy Child Theme

Theme URI: http://dummy-url.com/

Description: This is a dummy theme relying on TwentyTen.

Author: Crash Test Dummy

Version: 1.0

Tags: black, blue, white, two-columns, fixed-width, custom-header, custom-background, threaded-comments, sticky-post,
translation-ready, microformats, rtl-language-support, editor-style

Template: twentyten

*/

Add comments for developers

In your stylesheet file, you can also add some comments to your theme for other developers to see. These comments won't show up in the
WordPress admin panel or anything; they are for development purposes only.

Maybe you're using code from someone else and want to credit it, things like that. Just add /*, and then type your comment, ending with */. As
you can see from the following example, you can just add your comment to the top, have several lines of code, and add additional comments, as
with any stylesheet.

/*
Theme Name: Twenty Ten
Theme URI: http://wordpress.org/
Description: The 2010 theme for WordPress is stylish, customizable, simple, and readable -- make it yours with a custom
menu, header image, and background. Twenty Ten supports six widgetized areas (two in the sidebar, four in the footer) and
featured images (thumbnails for gallery posts and custom header images for posts and pages). It includes stylesheets for
print and the admin Visual Editor, special styles for posts in the “Asides” and “Gallery” categories, and has an optional
one-column page template that removes the sidebar.
Author: the WordPress team
Version: 1.1
Tags: black, blue, white, two-columns, fixed-width, custom-header, custom-background, threaded-comments, sticky-post,
translation-ready, microformats, rtl-language-support, editor-style

Here are my theme comments, added to TwentyTen’s style.css.

Some more! Here!

And a third line with a blank one above.
*/
body { background: #fff; }
/* An additional comment in the file! */
p { font-weight: bold; }

That's it for stylesheets; now let's move on to the PHP template files.

The template files at your disposal

This link gives an overview of all the template files that you can play with, and what they default back to should they be absent from your theme’s
folder (http://codex.wordpress.org/template).

The template files are PHP files containing the code snippets needed to display your site’s content. A few key template files are header.php,
footer.php, index.php, and sidebar.php, as you probably remember (see Figure 2-3 for an overview of these files).

Other possible template files for various parts of your site range from the single-post view (single.php for example, which is used when you view
a post) to how a 404 page not found should be displayed (404.php). Figure 2-4 shows a single-post view.

The Epic Test Blog st ater WordPres s Header
header.php

Search

Layout Test (Search)
This is a sticky post!!! Make sure it sticks!

This should then split into other pages with layout, images, HTML tags, and other things.

Pages: 1 2 3

Sidebar

Content Sebat b

index.php Good Od Days

Where lorem ipsum ruled, was a novelty, and kicked serious ass because no one knew
what it meant or where the iibberish came from.

Et duis quis convallis convallis tortor nulla, imperdiet lobortis sed urna nune mi, dolor
inculis magna magna porttitor amet pede, eget id fringilla commodo, etiam suscipit
pell que consequat bibendum ipsum vel. Scelerisque tristique tortor justo
perferendis orci tincidunt, ornare sed magna, quisque dictum nisl eget fringilla non, ac at
tristique ac, neque maecenas nec ut massa ac. Sociis ante mauris neque pretium, neque et.
Posuere et aliquam cubilia pede. Non vestibulum nec nibh. Id orci volutpat velit, mauris
tristique nec eros. Justo sed turpis. Maecenas aliquip, varius pellentesque sed
ullamecorper vivamus integer amet, nec eu, netus ac. In consequat quis vestibulum.

Hello world!

Welcome to WordPress. This is your first post. Edit or delete it, then start blogging!

Footer

footer.php

The Epic Test Blog

Figure 2-3: A typical theme setup portrayed using the Twenty Ten theme

The Epic Test Blog

gL

e Sy i,

O

Another Post to Die Fc t's Alter Some More. OK? — Search
(‘Searcn
Lorem Ipsum is so 1997 -
sted on September 5, 2010 by tdh Categories
= acatorm
Proin orci sagittis. Ut et semper dignissim pellentesque mollis sollicitudin enim rem » antiquarianism
massa ut proin. Mollis gravida ac donec varius pharetra. Ullamcorper deserunt libero. Et i‘\z::emm
consectetuer dolor turpis lorem vel. Donec mollis placerat. Auctor auctor aliquam. Orci i ammn oo
tristique lorem fermentum per vulputate vel at pretium enim morbi tincidunt. Ut = broder
porttitor id erat massa dolor litora quis leo. Duis viverra blandit. E:’:‘“
« Cat -B
Magna quisque eu est in malesuada sed posuere occaecat cras dolor suspendisse. A felis = CatC
amet. Fusce suscipit quam purus rhoncus magni in purus ultrices fermentum lorem justo. - f:‘“’fllpinnfh‘p
Diam nullam neque aliquet in diam. Pretium nibh ac. Tellus nec nulla euismod faucibus ;;::::m
metus pretium scelerisque ipsum. Lacinia ut libero mauris sodales turpis donec mauris » disinclination
pulvinar. Ac ante dui. Esse venenatis eget. Phasellus lectus at placerat mauris at. ::S;::Lm"
Convallis rhoncus dis diam et odio vestibulum donec nec a vel eleifend. Enim tincidunt e echappee

consectetuer. Vel tincidunt non. A volutpat arcu dui nulla porta. Nulla amet dolor.

= enphagy

Figure 2-4: A single post in the Twenty Ten theme, controlled by single.php

The really nice part is that you don’t need to use all of these template files, because most of them (although not all) will revert to index.php should
they be absent. So you don’t need them all, is what I'm saying, although you'll probably want them when you're building advanced sites.

If your theme is lacking a category.php template file, WordPress uses index.php instead. Sometimes there are more than one file to default
back to, however, so there is something of a hierarchical order (for an overview of the template file hierarchy, go to
http://codex.wordpress.org/Template Hierarchy). For example, if you have a template file for your News category, you can name that
one category-news.php. Should it be absent, WordPress reverts to category.php, and then back to index.php.

You don’t need all these template files, you can just as well do everything in index.php with some fancy coding (with conditional tags, 1 get to that
in Chapter 3). In fact, if your site is a simple one, it might not even be all that fancy or hard to pull off. However, this will be a bit messy. Most of
the time it is better to split everything up in separate template files than to make index.php do everything at once. Itis also a matter of
performance, since a massive index.php powering your whole site will mean an unnecessary amount of code being parsed all the time. Utilizing
the various template files available is a better choice.

Header and Footer Template Files

Besides style.css and index.php (assuming you're not doing a child theme), the two template files that you need in every theme are header.php
and footer.php. These two files start and stop WordPress, are easily called (included really) by template tags in every other template file, and
make things a lot easier on you.

Think about it, having a file containing the top of your site — from logo and menu to the actual wrapping div’s that control the layout — and
another file doing the same with the bottom, sure sounds like a good idea, right? It is, and it's not something the WordPress developers thought
of first, and itis common practice.

Also, another good thing about having a header.php and a footer.php is so you initiate some stuff in the header section of your theme.
WordPress then knows what to do, when to start doing it, and things like that.

The Header Code

The following is the header.php file from the Twenty Ten theme (see the final header in Figure 2-5), which contains a whole lot of stuff you might
not actually need, and obviously a bunch of important things as well. Code within /* and */ are commented, as are PHP lines with // in front of
them.

The Epic Test BIOg Just another WordPress site

Search

Categories

Figure 2-5: The Twenty Ten header

<?php
/**

* The Header for our theme.
Displays all of the <head> section and everything up till <div id="main”>

@package WordPress

@subpackage Twenty Ten

* @since Twenty Ten 1.0

*/

?><!DOCTYPE html>

<html <?php language attributes(); ?>>

<head>
<meta charset="<?php bloginfo(‘charset’); ?>" />
<title><?php
/%
* Print the <title> tag based on what is being viewed.
*/
global S$page, S$paged;
wp title(‘|’, true, ‘right’);

// Add the blog name.

bloginfo(‘name’);

// Add the blog description for the home/front page.
$site description = get bloginfo(‘description’, ‘display’);

if ($site description && (is home() || is front page()))
echo “ | $site description”;
// Add a page number if necessary:
if (Spaged >= 2 || S$page >= 2)
echo ' | ' . sprintf((‘Page %s’, ‘twentyten’), max(Spaged, Spage));
?></title>

<link rel="profile” href="http://gmpg.org/xfn/11" />
<link rel="stylesheet” type="text/css” media="all” href="<?php bloginfo(‘stylesheet url’); 2>" />
<link rel="pingback” href="<?php bloginfo(‘pingback url’); 2> />
<?php
/* We add some JavaScript to pages with the comment form
* to support sites with threaded comments (when in use).
*/
if (is_singular() && get option(‘thread comments’))
wp_enqueue script(‘comment-reply’);
/* Always have wp head() just before the closing </head>
* tag of your theme, or you will break many plugins, which
* generally use this hook to add elements to <head> such
* as styles, scripts, and meta tags.

*/
wp_head() ;
2>
</head>

Now, you don’t need all that in your own theme, but some things are important. For example, itis a good idea to include the stylesheet so that
your styles will load:

<link rel="stylesheet” type="text/css” media="all” href="<?php bloginfo(‘stylesheet url’); 2>" />

Other parts are necessary to validate, like a proper title for example. However, the one really important piece of code here is the one that kicks
off WordPress:

<?php
/* We add some JavaScript to pages with the comment form
* to support sites with threaded comments (when in use).
*/
if (is_singular() && get option(‘thread comments’))
wp_enqueue script(‘comment-reply’);
/* Always have wp head() just before the closing </head>
* tag of your theme, or you will break many plugins, which
* generally use this hook to add elements to <head> such
* as styles, scripts, and meta tags.
*/
wp_head() ;
?>

Without that, no WordPress — you need it, itis as simple as that. As the commented part says, you should always put wp_head () just before
you close the head tag.

The Footer Code

The same goes for the “I'm done now, thank you very much” message to WordPress found in footer.php. Again, this is the footer.php file from
the Twenty Ten theme. It contains a widget area and theme specific stuff. See the Twenty Ten footer in Figure 2-6.

Lorem ipsum Pci.vlular tags £ Latest from TDH.me Blogroll
i i clit veli tt . Waiti Y i « Dev

Lorem ipsum Idolur sit amet, elit velit C a e]S s d i Wmt.mg for the 11.6" MacBook Air Dev elopmenlt Blog
nulla fames, vitae tempus volutpat donec, f y = Getting ready for Notes 2.0 = Documentation

2 i crushing dinarchy doolie energumen
ut cursus id ultrices mauris, ipsum R 3 f = Why I'll buy the 11,6" MacBook Air = Plugins

¥ ephialtes eudiometer figuriste habergeon i A
metus duis bibendum, amet lorem = Simple Pfolio theme tease = Suggest Ideas

hapless hartshorn hostility impregnability < 3
= ['m thrilled about the Glif = Support Forum

= Themes

; ;) . o
integer libero lobortis egestas sed. Varius impropriation knave misinformed moil

duis. Et nisi, nibh nullam non sed ey : 2 i

. . . mornful outlaw pamphjlet pneumatics portly

curabitur luctus, hendrerit ut, nec ipsum, . 3 = WordPress Planet
portreeve precipitancy

Privation popmme

psychological puncher ramose renegade

pretium sem eget netus en tellus velit.

retrocede stagnation unhorsed tag: tagz
tag3j thunderheaded unculpable withered
brandnew xanthopsia

The Epic Test Blog () Proudly powered by WordPress.

Figure 2-6: The Twenty Ten footer with some content in the widget areas

<?php

/**

* The template for displaying the footer.
*

* Contains the closing of the id=main div and all content
* after. Calls sidebar-footer.php for bottom widgets.

*

* @package WordPress

* @subpackage Twenty Ten

* @since Twenty Ten 1.0

*/

?>

</div><!-- #main -->
<div id=”"footer” role="contentinfo”>
<div id="colophon”>
<?php

/* A sidebar in the footer? Yep. You can can customize
p
* your footer with four columns of widgets.
*/

get sidebar(‘footer’);

<div id=”"site-info”>

<a href="<?php echo home url(‘/’) ?>"” title="<?php echo esc_attr(get bloginfo (
‘name’, ‘display’)); ?>” rel="home”>
<?php bloginfo(‘name’); 7>

</div><!-- #site-info -->

<div id="site-generator”>
<?php do_action(‘twentyten credits’); ?>
<a href="<?php echo esc url(_ (‘http://wordpress.org/’, ‘twentyten’)); ?>”
title="<?php esc attr e(‘Semantic Personal Publishing Platform’,
‘twentyten’); ?>” rel="generator”>
<?php printf((‘Proudly powered by %s.’, ‘twentyten’), ‘WordPress’); ?>

</div><!-- #site-generator -->
</div><!-- #colophon -->
</div><!-- #footer —-->
</div><!-- #wrapper -->
<?php
/* Always have wp footer() just before the closing </body>
* tag of your theme, or you will break many plugins, which
* generally use this hook to reference JavaScript files.
*/
wp footer () ;
2>
</body>
</html>

The only important thing here, besides closing all the HTML tags from the header, as well as the body and html tag, is the wp_footer ()
template tag. This one tells WordPress that the page is done, everything’s (hopefully) dandy and it can stop running now. You need it for plugins
and other things, and WordPress needs it to stop when it should, so make sure you have it in your theme, just before closing the body tag.

<?php
/* Always have wp footer() just before the closing </body>
* tag of your theme, or you will break many plugins, which
* generally use this hook to reference JavaScript files.
*/
wp footer () ;
2>

Both the header.php and footer.php template files can look more or less anyway you'd want. Maybe you prefer tighter header files, or you want
to load more stuff, like JavaScript libraries or additional stylesheets (although you could do that from within style.css too, of course) — just do it
anyway you like, but make sure that the crucial tags needed to kick off WordPress are there. Likewise, your footer.php will be formed after your
needs, both in the actual footer (big or small, full of information or more or less empty — that’s your call) and by the fact that WordPress needs

to be told when it is done.

The Loop and your Content

Before | go into the template files that control the various parts of your site, I'd like to just touch the essence of what goes in the rest of them, not
counting functions.php if that one is present. Most template files in a WordPress theme loads the header, the footer, and the sidebar. This is
done with template tags, like this:
<?php get header(); 2>
THIS IS WHERE THE LOOP OUTPUTS CONTENT.
<?php get sidebar(); ?>
<?php get footer(); 2>

These three simple little custom PHP tags include the header.php, sidebar.php, and footer.php template files, respectively. They could in fact
just as well have been regular PHP includes, which you might be familiar with if you've built sites using PHP before.

Anyway, most of the template files include these files, and the magical little thing that makes WordPress tick: The loop.

What is the Wordpress Loop?

The loop, often spelled with a capital L to show that 'm talking about THE loop of loops, is a PHP snippet that pulls your content from the
database. It can be a set number of posts (called using a while loop) or just one (fetched using an ID), or it can be a Page. It can also be a
custom post type, an archive of posts, an uploaded image, and so on.

The loop is what displays your content. You need it in every template that is meant to pull content from the database and display it. Obviously

you can fill your template tags with static content without using the loop, but that doesn’t make much sense most of the time, now does it? The
whole idea is, after all, to use WordPress as a CMS, not to mimic the HTML files of the old days.

Just to make things a bit more clear, here is a simple template file that first includes the header with get header (), then outputs content using
the loop, includes the sidebar.php file with get sidebar (), and finally includes the footer.php file with get footer ().

<?php if (have posts()) : while (have posts()) : the post(); 2>
<div id="post-<?php the ID(); ?>” <?php post class(); ?>>
<h2><a href="<?php the permalink(); ?>” title="<?php the title(); ?>" rel="bookmark”><?php
the title(); ?></h2>
<div class="entry”>
<?php the content(); 2>
</div>
</div>

<?php endwhile; else: ?>
<p>Sorry, we’ve got nothing!</p>
<?php endif; °?>

The whole thing starts with a simple i £ clause that checks to see if there are any posts. Then WordPress outputs the posts (with the posts)
for as long as there are any using the while loop. How many times while will loop depends on your WordPress settings and where you are on
the site. If you're viewing a category listing and have said that you should display 10 posts per page on the Reading Settings page in the admin
panel, WordPress will loop 10 times hence displaying 10 posts. Should there be fewer posts, it'll stop, obviously.

However, you may be on a single-post screen or on a Page, in which case WordPress will just loop once because it knows that you just want a
particular post or Page. You'll only get that returned.

Finally, there’s an e1se section to output something should there not be anything valid to return.

Iwork a lot with the loop later on, so this was just a taster to get the principle out there.

The Loop TEMPLATE tag

Prior to WordPress 3.0, you would stick your loop in your template files, such as index.php or single.php. You can still do that, but thanks to the
get template part () template tag you can separate the loop and stick it in its own template file. With get template part () youcan
include loop.php (or loop-single.php, for example) in a fashion similar to get sidebar (). This means that you can have one or several loop
template files which you call upon when you need theme, further separating design and site layout from code.

Iwork a lot with get template part () laterin this book. For now, itis enough to be aware that you can include template files containing the
loop using get template part().

Using the Loop in TEMPLATE FILEs

We won’t dwell long on this topic since I'll be digging into Twenty Ten in the next chapter, but it might be good to take a quick peek at how the
loop is used in template files to control the content on various parts of your site. This could be a single.php (to control your single-post view) or
category.php (for your category archive needs), or some other content-related template file in your theme.

Let's take a look at index.php from the Twenty Ten theme. It is the final fallback file for any content view, so it isn’t used all that much. That also
means that it is pretty general, which suits us perfectly. Here it is:

<?php
/**

The main template file.

*

This is the most generic template file in a WordPress theme

and one of the two required files for a theme (the other being style.css).
It is used to display a page when nothing more specific matches a query.
E.g., 1t puts together the home page when no home.php file exists.

Learn more: http://codex.wordpress.org/Template Hierarchy

@package WordPress
@subpackage Twenty Ten
@since Twenty Ten 1.0
/
get header(); 2>
<div id="container”>
<div id="content” role="main”>
<?php
/* Run the loop to output the posts.
* If you want to overload this in a child theme then include a file
* called loop-index.php and that will be used instead.
*/
get template part(‘loop’, ‘index’);
?>

X% ok ok ok X o 3k X %

</div><!-- #content -->
</div><!-- #container -->
<?php get sidebar(); ?>
<?php get footer(); 2>

The parts above get header () are just comments about what the file is. What you want to be looking atis get header (), which includes
header.php, and then go down to the bottom and note get sidebar (), which fetches sidebar.php, as well as get footer () whichincludes
footer.php. The stuff in between, sitting inthe div#container, is what 'm really interested in here, because this is where you'll find the

get template part () template tag.

get template part(‘loop’, ‘index’);

This includes the loop template, first looking for loop-index.php, but failing that (Twenty Ten doesn’'t have that template file), it'll revert to
loop.php. And that is where our loop is, hence you've got a working template file relationship here, with all necessary (albeit not possible since
loop-index.php is missing, | get to why it is written like this later in the book in Chapter 3) files accounted for.

The Functions.PHP File

Functions.php is a special template file that helps you create widget areas (as you see in Figure 2-7), theme option pages for your theme-
specific settings, and doubles as something of a plugin for your theme. It can be almost empty, or loaded with functions and cool stuff that add
features to the theme. In fact, functions.php needn’t even exist for your theme, but that would mean that it isn’t widget ready, and you wouldn’t
want it that way, right?

Screen Options Help
o B y,
(2% Dashboard ‘__‘ | mdgets L
F Posts Available Widgets Primary Widget Area v
I‘_‘:';h Media Drag widgets from here to a sidebar on the right to activate them. Drag widgets back here to deactivate them and
= delete their settings The primary widget area
&* Links
== Archives Calendar Search: Search
[L] Pages
A monthly archive of your site's posts A calendar of your site’s posts
& Comments Categories: Categories
Categories Custom Menu
) Appearance i A list or dropdown of categories Use this widget to add one of your custom Recent Posts: Recent Posts
Themes menus as a widget.
Widgets Meta: Meta meta meta
Menus Links Meta
Background Your blogroll Log in/out, admin, feed and WordPress
Header links
Soiine Secondary Widget Area v
= Pages Recent Comments
£ Plugins
Your site's WordPress Pages The most recent comments
8. Users First Footer Widget Area ¥
T} Tools Recent Posts RSS |
= The first footer widget area |.
[ﬁ Sclr_ings The most recent posts on your site Entries from any RSS or Atom feed
Text: Lorem ipsum
Search Tag Cloud
A search form for your site Your most used tags in cloud format
Text Second Footer Widget Area v

Arbitrary text or HTML
The second footer widget area

Tag Cloud: Popular tags

Inactive Widgets

Drag widgets here to remove them from the sidebar but keep their settings.
Third Footer Widget Area

I
-

Calendar Text

Figure 2-7: Widgets displayed in the WordPress admin panel

Working with functions.php can be a bit daunting if you're not a PHP developer, since most of the code that goes there is pretty advanced stuff
for a newbie. Don'’t fret; you can copy and paste your way through that part, and mastering functions.php isn’t at all needed to create good
looking or cool WordPress themes. However, if you want to really turbo-charge the functionality of your WordPress site, you'll need to learn, or
find someone who can help you with your functions.php file. For now, it's enough if you'll manage to copy and paste your way to declaring and
then adding widget areas. | get to that in a little bit as well.

You never need to call on functions.php or include it in any way; if it is there, WordPress will use it. That's the good part. The bad part is that it
can get quite messy if you want to do a lot of things on the admin side of things. Let’s leave those parts be for now and focus on widgets.

This is the widget code from the Twenty Ten theme, which actually has more than just one widget area, but since they all are pretty much alike, |
stick with just one here. The code resides in functions.php, and it needs to be within PHP opening and closing tags, although not necessarily

with its own set of those; you can cram several PHP code snippets together if you like.

<?php
// Area 1, located at the top of the sidebar.
register sidebar(array(

‘name’ => (‘Primary Widget Area’, ‘twentyten’),
‘id’ => ‘primary-widget-area’,
‘description’ => (‘The primary widget area’, ‘twentyten’),

‘before widget’ => '<li id="%1$s” class="widget-container 2s”>’,
‘after widget’ => ‘</1i>’,
‘before title’ => ‘<h3 class="widget-title”>’,
‘after title’ => ‘</h3>’,
))i
2>

The function register sidebar actually doesn’t register sidebars per se, it registers widget areas commonly referred to as dynamic
sidebars. The first five register widget areas are called Sidebar, Footer A, B, C, and D. With this tiny bit of code, you'll find these in your
Widgets settings area in the WordPress admin panel. Obviously you need to add the actual output of the widget area to a template file,
otherwise it won’'t show up anywhere. | get to that later.

The last register sidebar is a bit special in the way it creates the final widget area. Instead of just passing the name to WordPress, you
pass a lot more data in an array. The reason for doing this is that widget areas per default are buiilt as lists, using ul and 11 tags. In this case,
you want a widget area for a submenu that relies on a div structure instead, rather than being a list. That's why you need to tell it what to put
before each widget in the area, and after, using before widget and after widget.

Functions.php is a powerful tool for those of us who want to do more advanced stuff. You can extend the functionality of your theme
tremendously using functions.php. Theoretically you can have a bunch of plugins residing in the template file, adding functionality that way.
There’s no telling what grand ideas you will realize using functions.php, from settings pages for your theme, to brand new features you haven't
thought of yet. Since functions.php essentially lets you run whatever you want (as long as itis PHP), that means that it really has massive
potential for theme designers.

Before you go all crazy about the possibilities, do keep in mind that an overly bloated functions.php file will mean longer loading time for your
theme. Functionality that isn’t theme specific should be kept apart, preferably in a plugin. That way it can extend beyond your theme as well.

Using Page Templates

Page templates are powerful tools for just about any site using WordPress as a CMS. It doesn’t matter whether you just have a pretty bloggish
simple site, or a full-fledged newspaper running on WordPress, you'll be able to put them to good use either way.

So what are Page templates, really? As the name implies, they are special templates for Pages. Pages, with the capital P, are obviously the
static pages that you can create in WordPress (as opposed to posts). When creating or editing a Page in WordPress, you'll notice the
Template option on the right-hand side of the screen (see Figure 2-8). This is where you pick from your Page templates, on a Page per Page
basis.

_\ﬂi' LAB6 Search Engines Blocked New Page v Howdy, tdh | Log Out I
|
Screen Options Help |
{at Dashboard i Edit Page |
E= I
= |
5~ Posts About Publish |
” |
I:L Media Permalink: http://lab6.cylinderlabs.net/7page_id=2 | Change Permalinks View Page Dvine Crnge |
T |
g Links Status: Published Edit |
Upload/insert = BB /3 Visual |
m Pages Visibility: Public Edit |
[R OOl = (== t
Pages Bl £ jdee] =iz | | =) = i Ail= B Published on: Aug 11, 2010 @ 8:09 Edit |
5 |
Add Ne: L s . s - .
g Faw This is an example of a WordPress page, you could edit this to put information about |
3¢ : ; Move to Trash
L/ Comments yourself or your site so readers know where you are coming from. You can create as — :
s Podcasts many pages like this one or sub-pages as you like and manage all of your content inside |
of WordPress. Page Attributes
[0 Appearance Template
- : fault Templ _
£ Plugins Default Template
. Order
¥, Users Path:
- Word count: 51 Last edited on August 11, 2010 at 8:09 am 0
I} Tools
—l Need help? Use the Help tab in the upper right Y
3% Settings . £ :
& & Custom Fields bl .

Figure 2-8: The Page template box is usually found to the right of the screen

Creating a Page Template

Creating a Page template is easy. All you need to do is put the following little code snippet at the very top of your new template file, and it then
appears as a Page template for your Pages:

<?php

/*

Template Name: My Page Template Title
*/

?>

Now, obviously you still need something below that. It could be a different design for a particular Page on your site, or something entirely
different. The Page template needn’t even contain the loop, maybe you just want to have a Page on your site with content fetched from
someplace else, and not the actual Page content? Then this is the way to do it.

You'll create a custom Page template in Chapter 3. For now it is enough to understand that you can add a number of Page template files to your
theme that do just about anything by adding those few lines of code.

Why use Page Templates?
It can't be said enough: The possibilities of Page templates are huge. You can do a lot of impressive stuff with Page templates if you put your
mind to it. It could be anything from portraying your content in the ideal way, to having multiple loops or even content from external services on a
Page within WordPress.

Since your Page template isn’t limited by the default loop, it means that you can do anything with the loop should you choose to keep it, or just
kick it out and do something entirely different with the Page or Pages using the Page template.

Just to get your mind going, here are some ideas as to what you could do with Page templates. Naturally, | do some cool stuff further on, but it
never hurts to mull these things over.

» Create a links Page: This one’s pretty obvious, just output the links from the Links settings in WordPress using the
wp_list bookmarks () template tag.

« Add subsections: Do custom loops containing the material you need. Sometimes the category or tag browsing just isn’'t enough, then
creating a Page with some custom loops can be the solution.

+ Break your design: Or rather, break out of it. Your Page template can call a completely different header and footer, and it can contain
entirely different objects, or at least CSS classes and IDs. If you need parts of your site to be different, Page templates are an easy enough
solution most of the time.

* Include external content: Just forget about the loop and use PHP or JavaScript to include external content. Maybe you want to show off
your tweets on a dedicated Page on your site? Then just create a Page template suited for it.

The possibilities for Page templates are, if not endless, at least very extensive. Consider what you can do with them when building your site,
and you might save yourself some headaches.

Understanding Template Tags

Before | dig into the theme files, you need to know a thing or two about template tags. In short, template tags are PHP code snippets that
WordPress can read and do things with, such as output the title of your post, link it appropriately to your article, display the content in an
appealing way, and so on. For example, you can adjust the output to control how a list is rendered. Just about everything you see on a
WordPress site that is actual content is output by template tags.

A commonly used template tag is the permalink (). Withit you can output the link to a post, for example. Per default it will output the URL,
which means you often use it when linking titles. Combined with the title () youcan get the title properly linked.

<a href=“<?php the permalink(); ?>“><?php the title(); ?>

Sometimes you pass parameters to template tags, such as the the bloginfo (‘name’) example you've seen previously, and at other times
you pass the parameters in a different fashion, but always inside the parenthesis of the template tag. You'll get your fill of passing parameters in
the coming chapters. For now it is enough to know that the stuff within the parenthesis contain your instructions as to how the template tag
should be used. Obviously, not all template tags take parameters, the permalink () is one that doesn't.

Wrapping It Up
Now you know what makes a theme tick, and have gotten your hands on some code as well. Let’s pick up the pace from here on, shall we?

In Chapter 3, I not only start doing some more advanced stuff, but | also dive into the Twenty Ten theme, adding features and functionality to it.
This means that | fiddle with the loop to control the content output, among other things. Twenty Ten is not only a great theme to build WordPress
sites with, it is also the perfect learning ground for anyone wanting to get into theming.

That's not all. After | discuss the Twenty Ten, you can get started for real. For now, welcome to the wonderful world of WordPress theming. | think
you'll like it.

Chapter 3: Digging into the Twenty Ten Theme

You can do a ton of things with WordPress themes. Up until now, | have really just scratched the surface. In this chapter, 1 dig a bit deeper and try
some functions and features you may find useful, depending on the goals of the site that you're building.

In this chapter, | cover the rest of the basics that | discuss in Chapter 2, and then you get your hands a bit dirty by working with the Twenty Ten
theme. You'll learn how to work with the custom menu feature, custom header images, and more. The goal is to show you what you can do with
WordPress, what fancy features are within a few lines of code’s grasp, and what you'll need plugins or more advanced coding to achieve.

Right, let’s go. Bring a shovel.

Working With the loop

The loop is what makes WordPress tick, looping through your content and outputting the items that meet your criteria. So if you're on a category
archive, WordPress loops through all the posts that belong to the selected category and outputs them, but only as many times as are set in the
Reading Settings screen on your admin panel (as shown in Figure 3-1). So if you've set WordPress to show ten posts per page, the loop
outputs ten posts, and then stops. Obviously the count is for valid outputs. If WordPress stumbles upon something that doesn’t belong to said
category, the loop just skips it and moves on to the next, until ten posts have been reached. This is something you really should know about
since getting control over how many posts you want to display is essential for archive pages.

[N Né] - -
chdlng Settings < Notes Bl WGEN
€« > C ﬂ 'ﬂ{ http://notesblog.com /wp/wp-admin/options-reading.php -3 B' "
:\.ﬂ)' Notes Blog New Post v Howdy, Thord Daniel Hedengren | Log Out
Help
A CJ . .
@ |IY Reading Settings
g Front page displays @ Your latest posts
(h (A static page (select below)
& Front page: — Select — -
15 Posts page: — Select — —
=)
Blog pages show at most 10 posts
o Syndication feeds show the 10 itemns
most recent
F icle in a fi
0, or each article in a feed, show @ Full text
T‘ﬁ () Summary
Encoding for pages and feeds UTF-8 The character encoding of your site
(UTF-8 is recommended, if you are adventurous there are some other encodings)
Save Changes
Thank you for creating with WordPress. | Documentation | Feedback Version 3.0.1

Figure 3-1: The Reading Settings screen in WordPress admin panel

A loop with content

Let's take a closer look at the loop and populate it with some content, something really basic to make it easy to understand. You need to add

template tags so that WordPress knows where to output the actual content.
The template tags for the loop:

* the title () foroutputting the post title

* the permalink () forlinking the post title

*the title attribute () for the proper link title attribute

* the content () for outputting the content

* the 1D ()forgetting the ID of the post

*post_class () to output the correct CSS classes for the post

That's it; so let's have a look.

<?php if (have posts()) : while (have posts()) : the post(); ?>
<div id="post-<?php the ID(); ?>” <?php post class(); ?>>
<h2>
<a href="<?php the permalink(); ?>” title="Permalink to <?php the title attribute(); ?>">
<?php the title(); 2>

</h2>
<div class="entry”>
<?php the content(); 2>
</div>
</div>

<?php endwhile; else: ?>
<p>Whoa! There’s nothing here!</p>
<?php endif; 2>

Each post sits ina div with an id named post-x where X is the ID of the post, thanks to the ID (). The div also gets a bunch of classes for
CSS to use thanks to the post _class () template tag, which outputs them automatically. These classes are then used to style posts differently
depending on what category, tag, and so forth they are using.

Moving on, you have an h2 heading in which the post title is located, linked to the post's page. The post title is in the link’s title, and is used to
output the actual post that the user will see; this is handled with the title (). The link gets the direct link to the post in question from
the permalink().

Finally there’s the actual post content, which sits in a div of its own here. How the post content will look when output is up to you. If you're using
the Read More feature in WordPress, you get a default “Read the rest of this entry” link; otherwise, you get the whole content of the post in this
case, since you're using the content (). An alternative would be to use the excerpt () to either get a machine created excerpt, or get the
excerpt added manually in the WordPress admin panel.

That's it. The HTML code that tells the visitor that there are no posts to display is pretty self-explanatory, right? Right.

The external loop.php file

There’s a new template in town, and it is called loop.php. This nifty little thing is meant to make life easier for theme designers. You now have
the chance to move the code for the loop from your current template files and include it as an external file, loop.php, instead. Much like how
header.php and footer.php work.

The most obvious benefit for using the loop.php file is not having to copy and paste every little change that you make to your loop to every
template file in your theme. Instead, you just reference the one file via a template tag. If you need to make changes to the loop, you can update
that one file.

The template tag that you use for loop.php is the brand new get template part().
<?php get template part(‘loop’); ?>

Place this tag where you normally put your loop, and that's that — now your template files include the loop from one central place, just like
get_header () does with header.php.

However, there’s more. Just like the get _sidebar () template tag lets you define which sidebar to get, get _template part () cangetyoua
specific loop-X.php template file instead of loop.php.

<?php get template part(‘loop’, ‘author’); 2>

This call looks for loop-author.php first, and then loop.php. That means that you can still have specific loops for specific parts of your site without
having to make changes to your main loop.php. In fact, just like theme template files degrade backwards when called for, and end up using
index.php if they're out of options, so do the loop template files. If loop-author.php does not exist, WordPress tries loop.php instead. That's why
the Twenty Ten theme is using get _template part (), butlooking for loop template files that aren’'t in the theme. This way child theme

designers can access them easy enough, without having to alter the actual template file.

To recap, you can put your loop code in loop.php, or in loop-X.php, where X is whatever string parameter you can add to the
get template part () template tag when including the loop template file. I do all that later on.

Do | have to use loop.php?

No, you don’'t have to use loop.php, and perhaps you shouldn’t. While it is a nice way to gain more control over your theme, it also means that it
won’t work on WordPress versions prior to 3.0. Not all people want to upgrade to the latest version of WordPress, so if you know you're
developing a theme for a version prior to 3.0, you can'tuse get template part ().Whatyou can do, however, is to include the loop template
file using a PHP include function:

<?php include (TEMPLATEPATH . ‘/loop.php’); 2>
Obviously you'll lose all the nice degrading previously described and everything, but at least your theme will work.

It is my firm belief that everyone should run the latest version of WordPress, if for no other reason than to make sure that the install is secure. If
you're building for versions prior to 3.0, they are out of date, so you should try to get them up to speed (and hence be able to use

get template part () and the loop.php template) rather than resort to half-hearted solutions like the one presented in the previous code
snippet.

The Twenty Ten loop

It goes without saying that Twenty Ten uses the get template part () template tag to include an external loop template.

Displaying Posts with loops

The Twenty Ten theme relies on one mammoth loop.php template file for most (but not all) of its loop needs. It is included in the various template
files that needs a loop, such as category.php or archive.php, using get_template_part(). Take a look:

<?php
/**
*

The loop that displays posts.

The loop displays the posts and the post content. See
http://codex.wordpress.org/The Loop to understand it and
http://codex.wordpress.org/Template Tags to understand
the tags used in it.

This can be overridden in child themes with loop.php or
loop-template.php, where ‘template’ is the loop context
requested by a template. For example, loop-index.php would
be used if it exists and Iask for the loop with:

<code>get template part(‘loop’, ‘index’);</code>

@package WordPress
@subpackage Twenty Ten
@since Twenty Ten 1.0

¥k ok ok ok ok ok ok ok k% k% %

*

*/
>
<?php /* Display navigation to next/previous pages when applicable */ 2>
<?php if ($wp query->max num pages > 1) : ?>
<div id="nav-above” class="navigation”>
<div class="nav-previous”><?php next posts link(_ (‘← Older
posts’, ‘twentyten’)); ?></div>
<div class="nav-next”><?php previous posts link(_ (‘Newer posts <span class="meta-
nav”>→’, ‘twentyten’)); ?></div>
</div><!-- #nav-above -->
<?php endif; ?>
<?php /* If there are no posts to display, such as an empty archive page */ 2>
<?php 1if (! have posts()) : ?>
<div id="post-0” class="post error404 not-found”>
<hl class="entry-title”>
<?php e(‘Not Found’, ‘twentyten’); 2>
</hl>
<div class="entry-content”>
<p><?php e(‘Apologies, but no results were found for the requested archive. Perhaps
searching will help find a related post.’, ‘twentyten’); ?></p>
<?php get search form(); ?>
</div><!-- .entry-content -->
</div><!-- #post-0 —-->
<?php endif; 2>
<?php
/* Start the Loop.

*

* In Twenty Ten I use the same loop in multiple contexts.

It is broken into three main parts: when I display
posts that are in the gallery category, when I'm displaying
posts in the asides category, and finally all other posts.

Additionally, I sometimes check for whether I am on an

archive page, a search page, and so on, allowing for small differences
in the loop on each template without actually duplicating

the rest of the loop that is shared.

* ok ok ok oF X ok X X X

Without further ado, the loop:
*/ 2>
<?php while (have posts()) : the post(); 2>
<?php /* How to display posts in the Gallery category. */ 2>
<?php if (in category(x(‘gallery’, ‘gallery category slug’, ‘twentyten’))) : 2>
<div id="post-<?php the ID(); ?>” <?php post class(); ?>>
<h2 class="entry-title”><a href="<?php the permalink(); ?>” title="<?php printf(esc_attr (
‘Permalink to %s’, ‘twentyten’), the title attribute(‘echo=0’")); ?>” rel="bookmark”><?php the title(); 2
></h2>
<div class="entry-meta”>
<?php twentyten posted on(); 2>
</div><!-- .entry-meta -->
<div class="entry-content”>
<?php if (post password required()) : ?>
<?php the content(); 2>
<?php else : ?>
<?php
$images = get children(array(‘post parent’ => $post->ID, ‘post type’ =>
‘attachment’, ‘post mime type’ => ‘image’, ‘orderby’ => ‘menu order’, ‘order’ => ‘ASC’, ‘numberposts’ => 999)
if ($images)
Stotal images = count($images);
Simage = array shift($images);
Simage img tag = wp get attachment image($image->ID, ‘thumbnail’);
>
<div class="gallery-thumb”>
<a class="size-thumbnail” href="<?php the permalink(); ?>"><?
php echo $image img tag; ?>

</div><!-- .gallery-thumb -->
<p><?php printf((‘This gallery contains <a %1$s>%2S$s
photos.’, ‘twentyten’),
‘href="'" . get permalink() . ‘" title="' . sprintf(
esc_attr (‘Permalink to %s’, ‘twentyten’), the title attribute(‘echo=0’)) . '” rel="bookmark”’,

Stotal images
); ?></p>
<?php endif; °?>
<?php the excerpt(); 2>
<?php endif; °?>
</div><!-- .entry-content —-->
<div class="entry-utility”>
<a href="<?php echo get term link(x(‘gallery’, ‘gallery category slug’,
‘twentyten’), ‘category’); ?>” title="<?php esc attr e(‘View posts in the Gallery category’, ‘twentyten’); ?
>"><?php e(‘More Galleries’, ‘twentyten’); ?>
|

<?php comments popup link((‘Leave a comment’,
‘twentyten’), _ (‘1 Comment’, ‘twentyten’), (‘% Comments’, ‘twentyten’)); ?>
<?php edit post link(_ (‘Edit’, ‘twentyten’), ‘|
’, ‘’); 2>
</div><!-- .entry-utility -->

</div><!-- #post-## -->
<?php /* How to display posts in the asides category */ ?>

<?php elseif (in category(x(‘asides’, ‘asides category slug’, ‘twentyten’))) : ?>
<div id="post-<?php the ID(); ?>"” <?php post class(); ?>>
<?php if (is_archive() || is_search()) : // Display excerpts for archives and search. ?>

<div class="entry-summary”>
<?php the excerpt(); 72>
</div><!-- .entry-summary -->
<?php else : ?>
<div class="entry-content”>
<?php the content(_ (‘Continue reading →’,
‘twentyten’)); ?>
</div><!-- .entry-content -->
<?php endif; ?>
<div class="entry-utility”>
<?php twentyten posted on(); ?>
|

<?php comments popup link(_ (‘Leave a comment’,

‘twentyten’), (‘1 Comment’, ‘twentyten’), (‘% Comments’, ‘twentyten’)); ?>
<?php edit post link(_ (‘Edit’, ‘twentyten’), ‘|
’, ‘’'); ?>
</div><!-- .entry-utility -->

</div><!-- #post-## —-—>
<?php /* How to display all other posts. */ 2>
<?php else : ?>

<div id="post-<?php the ID(); ?>” <?php post class(); ?>>
<h2 class="entry-title”><a href="<?php the permalink(); ?>” title="<?php printf(esc attr (
‘Permalink to %s’, ‘twentyten’), the title attribute(‘echo=0’")); ?>” rel="bookmark”><?php the title(); ?
></h2>
<div class="entry-meta”>
<?php twentyten posted on(); 2>
</div><!-- .entry-meta -->
<?php if (is_archive() || is_search()) : // Only display excerpts for archives and search. ?>

<div class="entry-summary”>
<?php the excerpt(); ?>
</div><!-- .entry-summary -->
<?php else : ?>
<div class="entry-content”>

<?php the content(_ (‘Continue reading →’,
‘twentyten’)); ?>
<?php wp link pages(array(‘before’ => ‘<div class="page-link”>’" . (‘Pages:’,
‘twentyten’), ‘after’ => ‘</div>’)); ?>
</div><!-- .entry-content —-->

<?php endif; ?>
<div class="entry-utility”>

<?php if (count(get the category())) : 2>

<?php printf((‘Posted in %2Ss’,
‘twentyten’), ‘entry-utility-prep entry-utility-prep-cat-links’, get the category list(‘', ‘)); 2>

|
<?php endif; ?>

<?php
Stags list = get the tag list(‘', Y, ');
if (Stags list):
>

<?php printf(_ (‘Tagged %2$s’,
‘twentyten’), ‘entry-utility-prep entry-utility-prep-tag-links’, S$tags list); 2>

|
<?php endif; ?>

<?php comments popup link(_ (‘Leave a comment’,
‘twentyten’), (‘1 Comment’, ‘twentyten’), (‘% Comments’, ‘twentyten’)); ?>
<?php edit post link(_ (‘Edit’, ‘twentyten’), ‘|
’, ‘’'); ?>
</div><!-- .entry-utility -->
</div><!-- #post-## —-—>
<?php comments template(‘', true); ?>

<?php endif; // This was the if statement that broke the loop into three parts based on categories. ?>
<?php endwhile; // End the loop. Whew. ?>
<?php /* Display navigation to next/previous pages when applicable */ ?>

<?php if ($wp query->max num pages > 1) : ?>
<div id="nav-below” class="navigation”>
<div class="nav-previous”><?php next posts link(_ (‘<span class="meta-
nav”>← Older posts’, ‘twentyten’)); ?></div>
<div class="nav-next”><?php previous posts link((‘Newer posts →’, ‘twentyten’)); ?></div>
</div><!-- #nav-below -->

<?php endif; ?>
Wow, that’s a lot of looping! Are you ready to write that kind of loop.php file for your upcoming sites?

Luckily you won’t have to. In the case of the Twenty Ten, the loop.php template is used to control almost every loop on the site. You don’t have to
do it that way, and neither should you really, since it makes the file unnecessarily large when you really just need a small part of it. The idea here
is to make it easy for child themes to override the loop, because every template file that calls the loop is in fact calling a specific loop (I discuss
child themes in Chapter 4). This is from category.php, for example:

<?php get template part(‘loop’, ‘category’); 2>

This code will look for loop-category.php, and then default back to loop.php. In the case of Twenty Ten, it does the latter.

So what part of the code in loop.php would | actually use? Well, since the first two parts are for the Gallery and Asides categories, respectively, |
have to go with the loop for all other posts:

<?php /* How to display all other posts. */ 2>
<?php else : ?>
<div id="post-<?php the ID(); ?>” <?php post class(); ?>>

<h2 class="entry-title”><a href="<?php the permalink(); ?>” title="<?php printf(esc attr (
‘Permalink to %s’, ‘twentyten’), the title attribute(‘echo=0’)); ?>” rel="bookmark”><?php the title(); °?
></h2>
<div class="entry-meta”>
<?php twentyten posted on(); ?>
</div><!-- .entry-meta -->
<?php if (is_archive() || is_search()) : // Only display excerpts for archives and search. ?>

<div class="entry-summary”>
<?php the excerpt(); 2>
</div><!-- .entry-summary -->
<?php else : ?>
<div class="entry-content”>

<?php the content(_ (‘Continue reading →’,
‘twentyten’)); ?>
<?php wp link pages(array(‘before’ => ‘<div class="page-link”>’" . (‘Pages:’,
‘twentyten’), ‘after’ => ‘</div>’)); ?>
</div><!-- .entry-content -->

<?php endif; ?>
<div class="entry-utility”>

<?php if (count(get the category())) : ?>

<?php printf(_(‘Posted in %2S$s’,
‘twentyten’), ‘entry-utility-prep entry-utility-prep-cat-links’, get the category list(', ‘')); 2>

|
<?php endif; ?>

<?php
Stags_list = get the tag list(‘', Y, ');
if (Stags list):
2> N

<?php printf(_(‘Tagged %2$s’,
‘twentyten’), ‘entry-utility-prep entry-utility-prep-tag-links’, Stags list); 2>

|
<?php endif; ?>

<?php comments popup link((‘Leave a comment’,
‘twentyten’), (‘1 Comment’, ‘twentyten’), (‘% Comments’, ‘twentyten’)); ?>
<?php edit post link(_ (‘Edit’, ‘twentyten’), ‘|
’, ‘’); ?>
</div><!-- .entry-utility -->

</div><!-- #post-## -->
<?php comments template(‘', true); ?>

That's basically how the loop.php template works in Twenty Ten. Since the one template file contains almost all the loops that the theme uses, it
picks the right loop using conditional tags (which | discuss later in this chapter). The Gallery category check that uses in category () is one of
those conditional tags. It only returns true, and hence uses the loop meant for the Gallery category only, if you in fact are in the Gallery category,
and so on. It's a bit messy, but again, the whole idea is to make it easy for child theme development on top of Twenty Ten, and then it is nice to

have a big loop.php like this to fall back on.
Example: Listing Only Titles in Category Archives

Let's create an alternate loop template for category archives, showing just the title and some post meta data (publishing date and author) for
each post. This is stylish and simple, and might fit your site. If nothing else, you'll learn something, which is kind of the point, right?

1. Find the loop template you need. Twenty Ten has a category.php file, and that's what's used for category archives as you probably
know. A quick look at that reveals this loop inclusion code.

get template part(‘loop’, ‘category’);
This means that WordPress will look for loop-category.php first, and then fall back to loop.php. Twenty Ten just ships with a single loop.php,
which means that you can get to the loop on the category archive pages by creating a loop-category.php file.
2. Create loop-category.php. Make a copy of loop.php (don’'t overwrite it, it is still needed for the rest of the site!) and rename it loop-
category.php. Now you've got something like this in a file called loop-category.php:

<?php

/**
The loop that displays posts.

The loop displays the posts and the post content. See
http://codex.wordpress.org/The Loop to understand it and
http://codex.wordpress.org/Template Tags to understand
the tags used in it.

This can be overridden in child themes with loop.php or
loop-template.php, where ‘template’ is the loop context
requested by a template. For example, loop-index.php would
be used if it exists and I ask for the loop with:
<code>get template part(‘loop’, ‘index’);</code>

@package WordPress
@subpackage Twenty Ten
@since Twenty Ten 1.0

X% o X X X X X X X X X X X X

>*

*/
2>
<?php /* Display navigation to next/previous pages when applicable */ ?>
<?php if ($wp query->max num pages > 1) : 2>
<div id="nav-above” class="navigation”>
<div class="nav-previous”><?php next posts link(_ (‘←
Older posts’, ‘twentyten’)); ?></div>
<div class="nav-next”><?php previous posts link(_ (‘Newer posts <span class="meta-
nav”>→’, ‘twentyten’)); ?></div>
</div><!-- #nav-above -->
<?php endif; ?>
<?php /* If there are no posts to display, such as an empty archive page */ 2>
<?php if (! have posts()) : ?>
<div id="post-0” class="post error404 not-found”>
<hl class="entry-title”><?php e(‘Not Found’, ‘twentyten’); ?></hl>
<div class="entry-content”>
<p><?php e(‘Apologies, but no results were found for the requested archive.
Perhaps searching will help find a related post.’, ‘twentyten’); ?></p>
<?php get search form(); 2>
</div><!-- .entry-content -->
</div><!-- #post-0 -->
<?php endif; ?>
<?php
Start the Loop.

In Twenty Ten I use the same loop in multiple contexts.

It is broken into three main parts: when I display

posts that are in the gallery category, when I display
posts in the asides category, and finally all other posts.

*
*
*
*
*
*
*
* Additionally, I sometimes check for whether I am on an

* archive page, a search page, etc., allowing for small differences
* in the loop on each template without actually duplicating

* the rest of the loop that is shared.

*

* Without further ado, the loop:

*/ 2>

<?php while (have posts()) : the post(); ?>

<?php /* How to display posts in the Gallery category. */ ?>

<?php if (in category(x(‘gallery’, ‘gallery category slug’, ‘twentyten’))) : 2>
<div id="post-<?php the ID(); ?>” <?php post class(); ?>>
<h2 class="entry-title”><a href="<?php the permalink(); ?>” title="<?php printf (
esc_attr (‘Permalink to %s’, ‘twentyten’), the title attribute(‘echo=0")); ?>” rel="bookmark”><?php

the title(); ?></h2>
<div class="entry-meta”>
<?php twentyten posted on(); ?>
</div><!-- .entry-meta -->
<div class="entry-content”>
<?php if (post password required()) : 2>
<?php the content(); ?>
<?php else : ?>
<?php
$images = get children(array(‘post parent’ => $post->ID, ‘post type’ =>
‘attachment’, ‘post mime type’ => ‘image’, ‘orderby’ => ‘menu order’, ‘order’ => ‘ASC’, ‘numberposts’ =>
999))i
if ($images)
Stotal images = count($images);
$image = array shift($images);
$image img tag = wp get attachment image($image->ID, ‘thumbnail’);
>

<div class="gallery—-thumb”>
<a class="size-thumbnail” href="<?php the permalink(); °?

.gallery-thumb -->
‘This gallery contains <a %1s>%2S$s

>"><?php echo $image img tag; ?>
</div><!--
<p><?php printf((
photos.’, ‘twentyten’),
‘href="' . get permalink() . ‘" title="' sprintf (
esc_attr (‘Permalink to %s’, ‘twentyten’), the title attribute(‘echo=0’)) . '” rel="bookmark”’,
Stotal images
) ; ?></p;
<?php endif; 2>
<?php the excerpt(); 2>
<?php endif; 2>
</div><!-- .entry-content -->
<div class="entry-utility”>
<a href="<?php echo get term link(x(‘gallery’, ‘gallery category slug’,
‘category’); ?>” title="<?php esc attr e(‘View posts in the Gallery category’, ‘twentyten’
‘twentyten’); ?>
__ (‘Leave a comment’,

‘twentyten’),

); ?2>"><?php e(‘More Galleries’,
|

<?php comments popup link (
‘% Comments’, ‘twentyten’)); ?>
‘<span class="meta-

) |
‘twentyten’),

‘twentyten’), _ (‘1 Comment’, ‘twentyten’
<?php edit post link(_ (‘Edit’,
sep”>| ’, ‘'); 2>
</div><!-- .entry-utility -->
</div><!-- #post-## -->
<?php /* How to display posts in the asides category */ 2>
<?php elseif (in category(x(‘asides’, ‘asides category slug’, ‘twentyten’))) : 2>
<div id="post-<?php the ID(); ?>” <?php post class(); ?>>
<?php 1f (is_archive() || is_search()) : // Display excerpts for archives and search. 2>
<div class="entry-summary”>
<?php the excerpt(); ?>
</div><!-- .entry-summary -->
<?php else : ?>
<div class="entry-content”>
__(‘Continue reading →’,

<?php the content (

‘twentyten’)); 2>
</div><!-- .entry-content -->
<?php endif; 2>

<div class="entry-utility”>
<?php twentyten posted on(); ?>
|
<?php comments popup link(_ (‘Leave a comment’,

‘twentyten’), _ (‘1 Comment’, ‘twentyten’), (‘% Comments’, ‘twentyten’)); ?>
<?php edit post link((‘Edit’, ‘twentyten’), ‘<span class="meta-
‘'); 2>

sep”>| ",
</div><!-- .entry-utility -->

</div><!-- #post-## -->
<?php /* How to display all other posts. */ 2>
?>
?>" rel="bookmark”><?php

<?php else :
<div id="post-<?php the ID(); ?>” <?php post class(); ?>>
<h2 class="entry-title”><a href="<?php the permalink(); ?>” title="<?php printf(
esc_attr (‘Permalink to %s’, ‘twentyten’), the title attribute(‘echo=0’));
the title(); ?></h2>
<div class="entry-meta”>
<?php twentyten posted on(); 2>

// Only display excerpts for archives and search. 2>

.entry-meta -->

</div><!--
<?php if (is_archive() || is_search())
<div class="entry-summary”>

<?php the excerpt(); 2>
.entry-summary -—-—>

</div><!--
<?php else ?>

<div class="entry-content”>

<?php the content(_ (‘Continue reading →’,
‘twentyten’)); ?>
<?php wp link pages(array(‘before’ => ‘<div class="page-link”>’ (
‘twentyten’), ‘after’ => ‘</div>’)); 2>
.entry-content -->

‘Pages:’,
</div><!--

>

<div class="entry-utility”>

<?php 1f (count(get the category())) : 2>

<?php printf((‘<span

<?php endif;
class="%1$s”>Posted in %$2$s’,

‘twentyten’), ‘entry-utility-prep entry-utility-prep-cat-links’, get the category list(‘, ‘)); 2>

|
<?php endif; ?>

<?php
$tags_list = get the tag list(‘', Y, ');
if (S$tags list):
>

<?php printf(_ (‘Tagged %2S$s’,
‘twentyten’), ‘entry-utility-prep entry-utility-prep-tag-links’, S$tags list); 2>

|
<?php endif; °?>

<?php comments popup link(_ (‘Leave a comment’,
‘twentyten’), _ (‘1 Comment’, ‘twentyten’), (‘% Comments’, ‘twentyten’)); ?>
<?php edit post link(_ (‘Edit’, ‘twentyten’), ‘<span class="meta-
sep”>| ’, ‘'); 2>
</div><!-- .entry-utility -->

</div><!-- #post-## -->
<?php comments template(‘’, true); ?>
<?php endif; // This was the if statement that broke the loop into three parts based on
categories. ?>
<?php endwhile; // End the loop. Whew. 2>
<?php /* Display navigation to next/previous pages when applicable */ 2>

<?php if (Swp_query->max num pages > 1) : ?>
<div id="nav-below” class="navigation”>
<div class="nav-previous”><?php next posts link(_ (‘<span class="meta-
nav”>g← Older posts’, ‘twentyten’)); ?></div>
<div class="nav-next”><?php previous posts link(_ (‘Newer posts →’, ‘twentyten’)); ?></div>
</div><!-- #nav-below -->

<?php endif; °?>
3. Cut away (almost) everything. The loop-category.php is way to big! You just want to output the necessary content; no need to have
anything related to the Gallery or Asides categories, so start by cutting that away. In fact, you want to get rid of everything that isn’t crucial to
displaying the posts in the category archives.

<?php

/**
The loop that displays posts.

*

The loop displays the posts and the post content. See
http://codex.wordpress.org/The Loop to understand it and
http://codex.wordpress.org/Template Tags to understand
the tags used in it.

This can be overridden in child themes with loop.php or
loop-template.php, where ‘template’ is the loop context
requested by a template. For example, loop-index.php would
be used if it exists and I ask for the loop with:
<code>get template part(‘loop’, ‘index’);</code>

@package WordPress
@subpackage Twenty Ten
@since Twenty Ten 1.0

b S e e S S I N

*

*/
>
<?php /* Display navigation to next/previous pages when applicable */ 2>
<?php if ($wp query->max num pages > 1) : ?>
<div id="nav-above” class="navigation”>
<div class="nav-previous”><?php next posts link(_ (‘←
Older posts’, ‘twentyten’)); ?></div>
<div class="nav-next”><?php previous posts link(_ (‘Newer posts <span class="meta-
nav”>→’, ‘twentyten’)); ?></div>
</div><!-- #nav-above -->
<?php endif; ?>
<?php /* If there are no posts to display, such as an empty archive page */ 2>
<?php if (! have posts()) : ?>
<div id="post-0” class="post error404 not-found”>
<hl class="entry-title”><?php e(‘Not Found’, ‘twentyten’); ?></hl>
<div class="entry-content”>
<p><?php e(‘Apologies, but no results were found for the requested archive.
Perhaps searching will help find a related post.’, ‘twentyten’); ?></p>
<?php get search form(); 2>
</div><!-- .entry-content -->

</div><!-- #post-0 -->
<?php endif; ?>
<?php

/* Start the Loop.

*

In Twenty Ten I use the same loop in multiple contexts.
It is broken into three main parts: when I display
posts that are in the gallery category, when I display
posts in the asides category, and finally all other posts.

Additionally, I sometimes check for whether I am on an

archive page, a search page, etc., allowing for small differences
in the loop on each template without actually duplicating

the rest of the loop that is shared.

P

Without further ado, the loop:
*/ 2>
<?php while (have posts()) : the post(); 2>
<div id="post-<?php the ID(); ?>” <?php post class(); ?>>
<h2 class="entry-title”><a href="<?php the permalink(); ?>” title="<?php printf (
esc_attr (‘Permalink to %s’, ‘twentyten’), the title attribute(‘echo=0’)); ?>” rel="bookmark”><?php
the title(); ?></h2>
<div class="entry-meta”>
<?php twentyten posted on(); ?>
</div><!-- .entry-meta -->
</div><!-- #post-## -->
<?php comments template(‘', true); 2>
<?php endwhile; // End the loop. Whew. 2>
<?php /* Display navigation to next/previous pages when applicable */ 2>

<?php if (Swp_query->max num pages > 1) : ?>
<div id="nav-below” class="navigation”>
<div class="nav-previous”><?php next posts link(_ (‘<span class="meta-
nav”>← Older posts’, ‘twentyten’)); ?></div>
<div class="nav-next”><?php previous posts link(_ (‘Newer posts →’, ‘twentyten’)); ?></div>
</div><!-- #nav-below -->

<?php endif; ?>

The stuff before and after the actual loop is still there. That's for navigational purposes and what's displayed when the category archive is
empty. This is what does the actual post output now:
<?php while (have posts()) : the post(); 2>
<div id="post-<?php the ID(); ?>” <?php post class(); ?>>
<h2 class="entry-title”><a href="<?php the permalink(); ?>” title="<?php printf(
esc_attr (‘Permalink to %s’, ‘twentyten’), the title attribute(‘echo=0’)); ?>” rel="bookmark”><?php
the title(); ?></h2>
<div class="entry-meta”>
<?php twentyten posted on(); ?>
</div><!-- .entry-meta -->
</div><!-- #post-## -->
<?php comments template(‘', true); 2>
<?php endwhile; // End the loop. Whew. ?>

A quick check on a category archive shows us a listing without anything else but a title and some meta data (Figure 3-2 shows this listing).
You might want to style it a bit in style.css to make it a little tighter, but it'll do for this example.

800

(i Featured | The Epic Test Blog \ 1R
€ > C M sy http://localhost:B8BB8/wp3/?cat=3 » O~ F-
Mmail B ca MM @ Docs [JReader Edfb [Hse Ellme 3Ssb [Triaden [#cache [JADM [RL [@Del {] Ovriga bokmarken
. T mid]
LJ;‘;J»J,:EJ.“J-’ g - e
x . v T

Category Archives: Featured

= September 2010

("Search

Man Am | Featured (or what?) Archives

Meta
» Site Admin

me More, OK? + Log out

2010 by tdh

Let's Alter So

S ember

Lorem Ipsum is so 1997

dr

sted on September 5, 2010 by

Another Post to Die For

1 on September 5, 2010 by

The Epic Lorem Ipsum Post
Posted on Se ber2, 2 by t

Figure 3-2: Category listing with just title and post meta data

4. But wait, what about Gallery and Asides? Yeah, that fancy stuff with thumbnails and asides won’'t work in category archives anymore,
since the loop-category.php is preferred over loop.php, and the custom display code for those two sits there. But you can change that. Let's
add the custom display to our loop-category.php. Start by locating this code in loop.php, that's what's doing all the pretty magic.

<?php /* How to display posts in the Gallery category. */ 2>

<?php if (in category(x(‘gallery’, ‘gallery category slug’, ‘twentyten’))) : 2>
<div id="post-<?php the ID(); ?>” <?php post class(); ?>>
<h2 class="entry-title”><a href="<?php the permalink(); ?>” title="<?php printf (
esc_attr (‘Permalink to %s’, ‘twentyten’), the title attribute(‘echo=0’)); ?>” rel="bookmark”><?php

the title(); ?></h2>
<div class="entry-meta”>
<?php twentyten posted on(); ?>
</div><!-- .entry-meta -->
<div class="entry-content”>
<?php if (post password required()) : 2>
<?php the content(); 2>
<?php else : ?>
<?php
$images = get children(array(‘post parent’ => $post->ID, ‘post type’ =>
‘attachment’, ‘post mime type’ => ‘image’, ‘orderby’ => ‘menu order’, ‘order’ => ‘ASC’, ‘numberposts’ =>
999))i
if ($images)
$total images = count($images);
Simage = array shift($images);
$image img tag = wp get attachment image($image->ID, ‘thumbnail’);
>
<div class="gallery—-thumb”>
<a class="size-thumbnail” href="<?php the permalink(); °?
>"><?php echo $image img tag; ?>

</div><!-- .gallery-thumb -->

<p><?php printf((‘This gallery contains <a %1$s>%2Ss
photos.’, ‘twentyten’),
‘href="' . get permalink() . ‘" title="' . sprintf(
esc_attr (‘Permalink to %s’, ‘twentyten’), the title attribute(‘echo=0’")) . '” rel="bookmark”’,

Stotal images
) ?></p;
<?php endif; ?>
<?php the excerpt(); 7>
<?php endif; ?>
</div><!-- .entry-content -->
<div class="entry-utility”>
<a href="<?php echo get term link(x(‘gallery’, ‘gallery category slug’,
‘twentyten’), ‘category’); ?>” title="<?php esc attr e(‘View posts in the Gallery category’, ‘twentyten’
); ?2>7"><?php e(‘More Galleries’, ‘twentyten’); ?>
|

<?php comments popup link(_ (‘Leave a comment’,
‘twentyten’), _ (‘1 Comment’, ‘twentyten’), (‘% Comments’, ‘twentyten’)); ?>
<?php edit post link(_ (‘Edit’, ‘twentyten’), ‘<span class="meta-
sep”>| ’, ‘’); ?>
</div><!-- .entry-utility -->

</div><!-- #post-## -->
<?php /* How to display posts in the asides category */ 2>

<?php elseif (in category(x(‘asides’, ‘asides category slug’, ‘twentyten’))) : 2>
<div id="post-<?php the ID(); ?>” <?php post class(); ?>>
<?php if (is archive() || is search()) : // Display excerpts for archives and search. ?>

<div class="entry-summary”>
<?php the excerpt(); ?>
</div><!-- .entry-summary -->
<?php else : ?>
<div class="entry-content”>
<?php the content(_ (‘Continue reading →’,
‘twentyten’)); ?>
</div><!-- .entry-content -->
<?php endif; ?>
<div class="entry-utility”>
<?php twentyten posted on(); ?>
|

<?php comments popup link(_ (‘Leave a comment’,
‘twentyten’), _ (‘1 Comment’, ‘twentyten’), (‘% Comments’, ‘twentyten’)); ?>
<?php edit post link(_ (‘Edit’, ‘twentyten’), ‘<span class="meta-
sep”>| ’, ‘’); ?>
</div><!-- .entry-utility -->
</div><!-- #post-## -->

Copy it, and insert it right after the loop starts, which is here:
<?php while (have posts()) : the post(); 2>
Then go down to where your newly added code ends, before the old code begins, and add this code snippet in between:
<?php /* How to display all other posts in category listings. */ 2>
<?php else : ?>
The first line is obviously just for documentation purposes; it helps us find our way in the file. It's the e1se part that is important.

After that is our old code that displays the title and the post meta. This just needs one more little addition, and that is the ending of the i £
clause you started when you added the code for the Gallery and Asides types of posts. You want to add the endi £ just after the
comments_template () call, and before the endwhile, which wraps up the whole loop.
<?php endif; // This was the if statement that broke the loop into three
parts based on categories. 7>
That's it; now it works! The Gallery and Asides category archives will behave as they do in Twenty Ten, and all other category archives will just
list a title and a post meta, like they did after Step 3. In the case of mixed archives where posts belong to more than one category, they will be
managed individually, as shown in Figure 3-3.

806

/ iy Featured | The Epic Test Blog gy

€ > C M T2 http://localhost:8888/wp3/?cat=3 b O~ -

™1 Mail mCaI MM @) Docs [Reader Eirn [lse mm: ;;:Sb [*) Triaden [#cache [JADM [JRL [@Del - Ovriga bokmarken

Category Archives: Featured ("search)

= September 2010

Good Old Days Archives

nber 5, 2010 by tdh

Meta

= Site Admin

= Log out
How are things beside things, aside from these who are beside the point?

Posted on September 5, 20 by tdh | Leave a comment

Man Am | Featured (or what?)
-“1.".."_‘1: J DY ‘J‘

on September 5, 201

A Cool Gallery of Things
Posted o by tdh

on September 5, 201(

This gallery contains 4 photos.

Do you like it? I do.

Figure 3-3: Mixed category archive listing

Here’s the final loop-category.php code with our Gallery and Asides additions:

<?php
/**
The loop that displays posts.

*

The loop displays the posts and the post content. See
http://codex.wordpress.org/The Loop to understand it and
http://codex.wordpress.org/Template Tags to understand
the tags used in it.

This can be overridden in child themes with loop.php or
loop-template.php, where ‘template’ is the loop context
requested by a template. For example, loop-index.php would
be used if it exists and I ask for the loop with:
<code>get template part(‘loop’, ‘index’);</code>

@package WordPress
@subpackage Twenty Ten
@since Twenty Ten 1.0

%ok ok ok ok kK ok ok b ok k%

*

*/
2>
<?php /* Display navigation to next/previous pages when applicable */ 2>
<?php if ($wp query->max num pages > 1) : ?>
<div id="nav-above” class="navigation”>
<div class="nav-previous”><?php next posts link(_ (‘← Older
posts’, ‘twentyten’)); ?></div>
<div class="nav-next”><?php previous posts link(_ (‘Newer posts <span class="meta-
nav”>→’, ‘twentyten’)); ?></div>
</div><!-- #nav-above -->
<?php endif; ?>

<?php /* If there are no posts to display, such as an empty archive page */ 2>
<?php if (! have posts()) : 2>
<div id="post-0” class="post error404 not-found”>
<hl class="entry-title”><?php e(‘Not Found’, ‘twentyten’); ?></hl>
<div class="entry-content”>
<p><?php e(‘Apologies, but no results were found for the requested archive. Perhaps
searching will help find a related post.’, ‘twentyten’); ?></p>
<?php get search form(); 2>

</div><!-- .entry-content —-->
</div><!-- #post-0 —-—>
<?php endif; ?>
<?php
/* Start the Loop.
*
* In Twenty Ten I use the same loop in multiple contexts.
* It is broken into three main parts: when I display
* posts that are in the gallery category, when I display
* posts in the asides category, and finally all other posts.
*
* Additionally, I sometimes check for whether I am on an
* archive page, a search page, etc., allowing for small differences
* in the loop on each template without actually duplicating
* the rest of the loop that is shared.
*
* Without further ado, the loop:
*/ 2>
<?php while (have posts()) : the post(); 2>
<?php /* How to display posts in the Gallery category. */ 2>
<?php if (in category(x(‘gallery’, ‘gallery category slug’, ‘twentyten’))) : 2>
<div id="post-<?php the ID(); ?>” <?php post class(); ?>>
<h2 class="entry-title”><a href="<?php the permalink(); ?>” title="<?php printf(esc_attr (
‘Permalink to %s’, ‘twentyten’), the title attribute(‘echo=0’")); ?>” rel="bookmark”><?php the title(); 2
></h2>
<div class="entry-meta”>
<?php twentyten posted on(); ?>
</div><!-- .entry-meta -->
<div class="entry-content”>
<?php if (post password required()) : ?>

<?php the content(); 2>
<?php else : ?>

<?php
$images = get children(array(‘post parent’ => $post->ID, ‘post type’ =>
‘attachment’, ‘post mime type’ => ‘image’, ‘orderby’ => ‘menu order’, ‘order’ => ‘ASC’, ‘numberposts’ => 999));
if ($images)
Stotal images = count($images);
Simage = array shift($images);
Simage img tag = wp get attachment image($image->ID, ‘thumbnail’);
2>

<div class="gallery—-thumb”>
<a class="size-thumbnail” href="<?php the permalink(); ?>"><?
php echo $image img tag; ?>

</div><!-- .gallery-thumb -->
<p><?php printf((‘This gallery contains <a %1$s>%2S$s
photos.’, ‘twentyten’),
‘href="'" . get permalink() . ‘7 title="' . sprintf(
esc_attr (‘Permalink to %s’, ‘twentyten’), the title attribute(‘echo=0’)) . '” rel="bookmark”’,

Stotal images
); ?></p>
<?php endif; ?>
<?php the excerpt(); 2>
<?php endif; ?>
</div><!-- .entry-content —-->
<div class="entry-utility”>
<a href="<?php echo get term link(x(‘gallery’, ‘gallery category slug’,
‘twentyten’), ‘category’); ?>” title="<?php esc attr e(‘View posts in the Gallery category’, ‘twentyten’); ?
>"><?php e(‘More Galleries’, ‘twentyten’); ?>
|

<?php comments popup link((‘Leave a comment’,
‘twentyten’), _ (‘1 Comment’, ‘twentyten’), (‘% Comments’, ‘twentyten’)); ?>
<?php edit post link(_ (‘Edit’, ‘twentyten’), ‘|
’, ‘’); 2>
</div><!-- .entry-utility -->

</div><!-- #post-## -->
<?php /* How to display posts in the asides category */ ?>
<?php elseif (in category(x(‘asides’, ‘asides category slug’, ‘twentyten’))) : 2>

<div id="post-<?php the ID(); ?>” <?php post class(); ?>>
<?php if (is_archive() || is_search()) : // Display excerpts for archives and search. ?>
<div class="entry-summary”>
<?php the excerpt(); ?>
</div><!-- .entry-summary -->
<?php else : ?>
<div class="entry-content”>
<?php the content(_ (‘Continue reading →’,
‘twentyten’)); ?>
</div><!-- .entry-content —-->
<?php endif; ?>
<div class="entry-utility”>
<?php twentyten posted on(); ?>
|

<?php comments popup link((‘Leave a comment’,
‘twentyten’), (‘1 Comment’, ‘twentyten’), (‘% Comments’, ‘twentyten’)); ?>
<?php edit post link(_ (‘Edit’, ‘twentyten’), ‘|
’, ‘’); ?>
</div><!-- .entry-utility -->

</div><!-- #post-## -->

<?php /* How to display all other posts in category listings. */ ?>
<?php else : ?>

<div id="post-<?php the ID(); ?>” <?php post class(); ?>>
<h2 class="entry-title”><a href="<?php the permalink(); ?>” title="<?php printf(esc attr (
‘Permalink to %s’, ‘twentyten’), the title attribute(‘echo=0’")); ?>” rel="bookmark”><?php the title(); 2

></h2>
<div class="entry-meta”>
<?php twentyten posted on(); 2>

</div><!-- .entry-meta -->
</div><!-- #post-## —-—>
<?php comments template(‘', true); ?>

<?php endif; // This was the if statement that broke the loop into three parts based on categories. 7>
<?php endwhile; // End the loop. Whew. 2>
<?php /* Display navigation to next/previous pages when applicable */ 2>
<?php if (S$wp query->max num pages > 1) : 2>
<div id="nav-below” class="navigation”>
<div class="nav-previous”><?php next posts link(_ (‘<span class="meta-
nav”>← Older posts’, ‘twentyten’)); ?></div>
<div class="nav-next”><?php previous posts link(_ (‘Newer posts →’, ‘twentyten’)); ?></div>
</div><!-- #nav-below -->
<?php endif; ?>

Working With Template Tags

We touched on template tags in Chapter 2, but just briefly. When working with your own themes, or just changing existing themes, you need to
know how to work with template tags in particular, as well as conditional tags, which | discuss later in this chapter.

All of the template tags are listed in the WordPress Codex (see Figure 3-4) for your viewing pleasure
(bttp://codex.wordpress.org/Template Tags). YoUll be using this page frequently since it is the best reference available, aside

perhaps from the actual WordPress files should you enjoy digging into them.

The template tags all work differently, although there are obvious similarities. A lot of them take the same kind of parameters, and you pass
them in similar ways. This means that as soon as you understand how template tags work, you can start using them all.

Passing parameters

While most template tags have a default output, sometimes that's not exactly what you want. That's why you want to pass parameters to the
template tag so that it does what you want. Parameters are your way of telling the template tag what it should and shouldn’t do.

Before moving on, remember that not all template tags will take a parameter. Sometimes the template tag just does one thing, and then you
won’t need to pass anything to it. Just use it as is, with no parameters.

HellLl g
Template Tags « WordPres: s

€« 95 C M v http://codex.wordpress.org/Template_Tags » O- F-

@ WORDPRESS.ORG

Home Showcase Extend About Docs Blog Forums Hosting
COdeX Codex tools: Log in

Template Tags Home Page

WordPress Lessons

Languages: English « Francais » Portugués do Brasil » E4EE » Pyccxuit » Ina » Tirkge » $30(%¢k) » (Add your language) Cetting Started

Working with WordPress

Template tags are used within your blog's Templates to display information dynamically or otherwise Design and Layout
P g ¥ g play Y y Contents
customize your blog, providing the tools to make it as individual and interesting as you are. Below is a Advanced Topics
= [hide]
list of the general user tags available in WordPress, sorted by function-specific category. i Troubleshooting
« 1 Tags
z * Developer Docs
. . = 2 Source Code
For further information on template tags and templates in general, see the following:

= 3 External Resources About WordPress

s Stepping In emplate 35 - an introduction to Template Tags.

) : odex Resources
= Anatomy of a Template Tag - details of how to put Tags into Template files. -

i i Communit n
= How to Pass Tag Parameters - details of how to use Parameters with Tags. skl Db

= Include Tags - additional tags related to including one Template file within another. Current events
= Conditional Tags - additional tags, not shown here, related to making your Templates more flexible with options. Recent changes
= Function Reference - additional tags related to core WordPress functionality, Random page

= Deprecated Functions - additional tags that are Deprecated. Help
@
= Templates - a comprehensive list of Template, Theme, and Tag resources.

= Stepping Into Templates - introduction to Template files.

Note: If you have an interesting twist on the implementation of a template tag, you're encouraged to add to its documentation for

Figure 3-4: The template tags page in the Codex

There are two primary ways to pass parameters to the template tag, but before you can do that you need to know which parameters the
template tag can take. After all, they aren’'t psychic beings that know exactly what you want! A listing of which parameters the template tag of
your choice can take is available in the WordPress Codex page on template tags. Just click the one you want and you'll get a description with
examples and everything.

Function-style parameters

Now, the first way to pass parameters to the template tag is often referred to as function-style parameter. A simple and commonly used
template tag is bloginfo (), often used to output the name of your site. This is handy if you don’t want to manually change the name of the site
in your template files since it will pick up the site title from the General Settings screen in the WordPress admin panel.

<?php bloginfo(‘name’); 2>

What you find within the single quotes is the parameter, ‘name’ in this case. The bloginfo () template tag outputs the site’s name. If lwant the
URL instead, | pass ‘url to bloginfo (), which means that | replace name in the previous code example with url.

<?php bloginfo(‘url’); 2>

Some template tags take several parameters at once, like the date (), which outputs the date. It will work on its own, without any parameters,
but you can get more control by adding more. In the following code snippet, | get the date output within h1 tags.

<?php the title(‘<hl1>’, ‘</h1>"); 2>

You recognize the title () from previous examples I'm sure; it outputs a post (or Page) title. As you can , you've got two parts within the
parenthesis, which are each within their own single quotes. Each one contains a parameter. The first one is the h1 tag, which is what goes
before the output (again, the post or Page title), and the second one is what comes after. Obviously you want to close our h1 tag here. What you
getis the title outputted within h1 tags.

There’s actually a third parameter that you can passto the title (), located last. Itis a Boolean parameter, which means it is either TRUE or
FALSE, defaulting to TRUE. The only thing it does is control whether the date () should print the content on the screen (TRUE), or just store it
for use in a PHP script (FALSE). Since it is located last you won't need to declare it, it just defaults to the default value (again, TRUE), but if it
were located in the middle of everything, you would have to pass it as well so that you wouldn't disrupt the order of things. In fact, the order in

which you pass the arguments is very important, so get it right.
Let's say |wanted to set that last parameter to FALSE. This is how | would do that:
<?php the title(‘<hl>’, ‘</hl1>’, FALSE); 2>
Notice the absence of single quotes around the Boolean parameter. TRUE or FALSE values don’t need that.

Query-style parameters

The second way you can pass parameters to a template tag is usually used when there are a ton of options. Let's take a look at
wp_tag_cloud (), atemplate tag that outputs a tag cloud. The default values will get the job done well enough, but perhaps you want to make
some changes to the output. For example, maybe you don't like the default number of tags, which is 45. Let’s say you want 30 instead. Now,
wp_tag_cloud () has 13 possible values you canfill. If that was to be managed with the function-style parameter explained in the previous

section, that would be quite a string now, wouldn't it? Luckily, query-style template tags let you change the value of one argument no matter
where in the order it is.

<?php wp_ tag cloud(‘number=30"); 2>

See that, a quick look atthe wp_tag cloud() page inthe Codextold you that the argument you want to change is called number in this case,
and then you just add it and tell the template tag which value you want. Simple, huh?

So what about changing several values then? It's almost as easy. Suppose you want to change the order of the tags from the default value,
which is by name, to how many posts are using the tags instead. A quick check at the Codex page tells you to use orderby and change that
from name (which is the default) to count.

<?php wp tag cloud(‘number=30&orderby=count’); 2>

A simple ampersand (&) separates the two arguments, and that’s that! You can add several arguments just by separating them with
ampersands. You don’t need to pass these parameters in any particular order, but it is a good idea to follow the one in the Codex since it will
make the code easier to read over time.

But what if you need to pass an ampersand as a parameter? That won’'t work with this method, obviously, because the template tag would think
it was supposed to take another argument since ampersands are used as separators. The way around that is to pass the arguments in an
array. Here’s the previous example with the added argument separator, which controls what goes between the tags in the tag cloud, and the
parameter • which is HTML for a bullet.

<?php $params = array (‘number’ => 30,
‘orderby’ => ‘count’,
‘separator’ => ‘•’);
wp_tag cloud($params); ?>

This looks a bit different. The array wants you to connect argument with parameter using the => arrow, and then keep both the argument and the
parameter inside single quotes of their own. At least when they're not Booleans (TRUE or FALSE) or integers (a whole number) no single
quotes are needed. In the preceding example, the parameter for number is an integer (30). You separate them with a comma, as you can see at
the end of each line. All these arguments are stored in $param, which thenis passed to wp_tag cloud () atthe end.

Did that mess with your head? Don’t worry about it; | get into more practical examples later on.

Now you know how to use template tags. This means that you're ready to do cooler things with your themes and control the output of content
better.

about strings, booleans, and integers

A string is a line of text, and can consist of one or several words. It is common that template tags takes strings as parameters. Strings are
passed within single quotes.

A Boolean is either TRUE or FALSE. The parameters can also be passed as true or false, as well as 1 (which is TRUE) or O (which is FALSE).

Finally, an integer is a whole number, which could be 14, 2, -3, 1, and so on. You can pass integers with or without single quotes, it doesn’t
matter.

Finding the template tag you want

Knowing which template tag is the right one isn’t always that easy. The best way is to read up on them all, but keeping them all fresh in mind is,
of course, a bit much to ask. Luckily they are grouped by naming conventions so that it is a bit easier to find them, as you’'ve no doubt
discovered on the Template Tags page in the WordPress Codex. With this in mind, you can narrow down the possible template tags for what
you want to achieve, making it easier to find the right one.

Forexample, allwp 1ist xxx () template tags behave the same way. So if you've figured out how wp_1ist pages () work, you'll have no
problem using wp_list bookmarks (). This canalso help you find the right template tag, since you might have used wp 1ist pages ()
before and you know you want a similar styled listing of links. Seeing that there isawp_1ist bookmarks () should point you in the right
direction.

Looking at themes is another great way of learning which template tags do what. Putting template tags to work is still the best way to master

them, and that is also how you'll learn enough to quickly decide which template tag is right for your current problem.

A few words about localization

Before moving on, sometimes you'llsee () around parameters in the code, or perhaps e (). These notations are for localization purposes,
and help the software find the strings that can be translated. They are always within PHP tags. So if you write <?php __ (‘This can be
translated’, locale); > this means that the text “This can be translated” can be translated with the use of language files.

You've seen this in the Twenty Tenfiles. Itis a fully localized theme, where locale from the preceding example is twentyten. That means that the
translation is unique to the theme. It is important to set a suitable locale to make sure there are no language conflicts. There’s more on theme
localization later in the book; for now it is enough to understand whatthese () and e () notations represent.

Conditional Content with Conditional Tags

Wouldn't it be handy to be able to check whether you're on a particular section of your site? For example, if you're on a Page, post, or perhaps
a category archive, you can output one thing, and if you're not you can output another? Well, you can, thanks to conditional tags that check
whether a condition is met. If it is, it returns true (and you can perform one action), and if it is not, it returns false (and you can do something
else).

Conditional tags perform a range of functions, from checking whether you're on the front page, on a single post or in a specific category, to if the
post type is hierarchical, if a post has an excerpt, and so on. In short, whenever you need to check a condition that relates to a location on your
site, you can look for an appropriate conditional tag. You'll find them all in the WordPress Codex, at
http://codex.wordpress.org/Conditional Tags.

Working with conditional tags

Some knowledge of PHP is useful when working with conditional tags. Not that it is complicated, but if you're less experienced with this code, it
may be a bit daunting. That being said, simpler things might very well be achieved by copy and pasting your way.

Try a quick check to see if you're on a single-post page. If you are, you'll output a short text snippet. The conditional tag that you use is
is single().

<?php if (is_single()) {
echo ‘Whoa nelly, this is a single post page!’;
} o>

This outputs the text Whoa nelly, this is a single post page! if the page where the code is executed is a single-post page (the Twenty Ten theme
in Figure 3-5). Now, this isn’t a book about PHP, but it might be good to know that echo outputs things, simple text, or HTML code for that
matter.

The Epic Test Blog Just another WordPress site

e~ v
v L!
LE LR - -
The Epic Lorem Ipsum Post Aichives
dosted on September 2, 2010 by tdh = September 2010
= September 2008

Lorem ipsum dolor sit amet, eleifend sodales sed urna fermentum. A mi. Et tempus » July 2008
massa convallis bibendum lectus dui. Feugiat sit donec at, mi nullam molestie, arcu lacus t{:‘:}zﬁfﬂ
lacinia placerat etiam, nunc quis donec ac semper vivamus donee, mollis ut donec tellus. 5 i\;anﬁ;mg

Mi amet, condimentum fringilla dolor nisl, nec molestie, phasellus orci, metus nisl

sollicitudin sed accumsan felis. Eget et viverra metus felis, libero viverra dui gravida. Mztnae S
Felis ridiculus sociis, odio per condimentum elementum in non. Proin aliquam aliquet - Log =

aenean felis, nec sapien cras pretium diam lacinia odio, arcu et cras erat quis aliquet,
egestas libero auctor porttitor pellentesque. Ac vehicula, enim non phasellus pede vitae,

eu wisi possimus posuere pulvinar sagittis sociosqu, nonummy feugiat, ultricies hendrerit
orci mi diam. Laoreet nonummy pede tempor suscipit. Vel vestibulum pellentesque
suspendisse nulla vitae quisque, libero nisl laoreet tellus, auctor id. Mi mauris aliquet in,
at et, vitae nisl vivamus quam, risus id laboriosam montes velit elit ut.

Figure: 3-5: Here’s a regular single post using the Twenty Ten theme
Let’s say you want to output an ad block on the home page only. You can use is_home () for this:

<?php if (is home()) { 2>
<div class="ad-block”>

Did you know I wrote another book as well?

Get Smashing WordPress: Beyond the Blog

</div>
<?php } ?>

Since the ad block contains a bunch of HTML code, you don’t use the echo function here. Instead, just interrupt the PHP snippet and resume it
after the HTML code.

But what if you want the ad block above to be on the home page and also on Archives? Then you need both is_home () and archive (). You
can list several conditions by separating them with double pipes, like this.

<?php if (is_home() || is_archive()) { 2>
<div class="ad-block”>

Did you know I wrote another book as well?

Get Smashing WordPress: Beyond the
Blog

</div>
<?php } ?>

Hang on, what about the rest of the site where you've got no ads? How about outputting informational text there instead, rather than outputting
nothing at all, which is the case right now. Yes, do that:

<?php if (is_home () || is_archive()) { 2>
<div class="ad-block”>

Did you know I wrote another book as well?

Get Smashing WordPress: Beyond the
Blog

</div>
<?php } else { 2>
<div class="ad-block”>
Want to advertise
here?
</div>
<?php } ?>

The added else part will be used if the conditions within the first i £ part aren’t met.

Finally, it may be useful to be able to do things when conditions are NOT met. That's easy; just add an exclamation mark (!) in front of the
conditional tag, like so:

<?php if (!is home()) { 2>
<p>This paragraph will show up everywhere except on the home page.</p>
<?php } ?>

The preceding code outputs the paragraph everywhere except on the home page.

Example: Adding Conditional Sidebars

Sometimes you want different content in your sidebar depending on where you are on your site. It is not uncommon to have one type of content
in your sidebar when on posts or archives, but another when on a Page. The following example shows how to handle that.

1. Save the old sidebar.php. Find sidebar.php in your theme and rename it OLD _sidebar.php. This way you can revert to the old code
anytime you want, which might be a good idea if you are trying this with a theme that you've downloaded.

2. Create a new sidebar.php. You'll do this from the ground up, so create a brand new file and name it sidebar.php.

3. Get the typical sidebar stuff in there. Let's assume that your theme follows decent WordPress nomenclature. That means that the
following code should get your new sidebar to show up where it should be. If it does not, just copy the classes from OLD _sidebar.php.

<ul id=”"sidebar”>
<!-- This is where the sidebar content goes —-->

4. Check if it's a Page. Use the following code to check if you are on a Page.
<ul id="sidebar”>
<?php if (is page()) { 2>
<!--— Stuff here will show up when viewing a Page -->
<?php } ?>

Now you have a simple i £ clause with the conditional tag is_page () . If that returns TRUE, whatever’s within the i £ clause will be returned.
Right now, it is just commented HTML code, so you won't see anything. This is where you want the sidebar content for your Pages.

5. Handle the rest of the site. Use a similar technique for the rest of the site.
<ul id="sidebar”>
<?php if (is page()) { 2>
<!--— Stuff here will show up when viewing a Page -->
<?php } else { ?>
<!-- The rest of the site will show this, and not the stuff above -->
<?php } ?>

So,if is_page () is TRUE (which means you are on a Page), you get the first comment, and if it is not, you get the second comment.

6. Get some content in there! You can put whatever content you like instead of each of these two comments. It could be template tags
listing content, advertisements, widget areas, or whatever:
<?php register sidebars(); 2>
In the preceding example, a single Page just shows links to other Pages (via wp_1ist pages (), a template tag), whereas the rest of the site
gets a category listing (withwp_1ist categories (), another template tag), a simple linked image, and then some links from the
wp_list bookmarks () template tag.

Enabling Features in functions.php

Before | move on, I need to talk a little bit about enabling features in functions.php. This beautiful little template file is what adds the ability to post

thumbnails, add menu support, enable custom backgrounds and headers, and so on. While all these features work with WordPress 3.0 and
later (some actually came in earlier versions), you can’t use them unless you enable them in functions.php. | provide examples for these features
later in this chapter.

Add the add_theme_support template tag
The template tag that you use is add_theme support () and itis prudent to add all your feature enabling early in functions.php so that it is
easy to scan the code for what's enabled and what's not.

The add_theme support () enables

« Custom headers: Using the parameter custom-header

» Custom backgrounds: Using the parameter custom-background
 Post thumbnails: Using the parameter post-thumbnails

* Menus: Using the parameter menus

 Automatic feed links: Using the parameter automatic-feed-1links
« Editor styles: Using the parameter editor-style

Pass the correct parameters

Itis really easy to enable a feature for use with add_theme support (). All you need to do is define the features you want to add by passing
the appropriate parameter to add_theme support () in functions.php, and it is ready for your use.

<?php

custom-header’);
custom-background’);
‘post-thumbnails’);

add theme support
add theme support
add theme support
add theme support(‘menus’);

add theme support (‘automatic-feed-links”’);
add theme support (‘editor-style’);

(‘
(‘
(
(
(
(

2>
This code would add theme support for all of the features mentioned in the preceding list.

Remember that just because you have added theme support for a feature, it doesn’'t mean that it actually shows up somewhere. Take post
thumbnails, for example, which need to be output somewhere in your theme’s template files as well (using the post thumbnail (), a
template tag). However, not enabling the feature means that it won’t work at all, and in the post thumbnail’s case, your users won't be able to
pick images to use as post thumbnails at all, even if you have the appropriate template tag in your theme.

It might sound like a good idea to always enable all these features, but | recommend against this. After all, why have WordPress show custom
header panels in the admin panel if the theme won’t actually show them? Enable the features you need, and add the rest as needed.

Adding Widgets using template files

Widget areas, often referred to as dynamic sidebars (despite not being sidebars all the time), are a theme designer’s best friend when
developing for clients. These drag-and-drop areas make it easy for anyone to add functionality, info boxes, and what not, just by dropping
widgets where you want them. Through plugins, you can extend the available widget functionality almost indefinitely, so having widget areas is a
sure way to make a site more flexible.

Adding widgets is easy enough. The code needed is split in two parts. The widget declaration, which adds the widget areas under Widgets in
the WordPress admin panel, is in your theme’s functions.php file (see the Widgets settings in Figure 3-6).

The second part is the code snippet that you put in your template files, where you want the widget area to appear. This means that if you want a
widget area beside your logo located in the header.php template, for example, you'll add it to that particular place in header.php.

Define widget areas

As stated, you define widget areas in your theme’s functions.php. This file can contain a bunch of items, and if you're looking at the Twenty Ten
theme, you'll notice that it can be quite extensive.

When defining widget areas, you're actually registering sidebars with register sidebars (). Despite the name, a widget area can be
anything, not just a sidebar; this is something inherited from WordPress’ past.

Screen Options Help

£ —
{3} Dashboard B Widgets
& Posts Available widgets Primary Widget Area v
oh Media Drag widgets from here to a sidebar on the right to activate them. Drag widgets back here ™))
to deactivate them and delete their settings. e primary widget area
@& Links
i) Pages Archives Calendar
A monthly archive of your site's posts A calendar of your site's posts
) Comments d o ¢ 4 o= Secondary Widget Area v
Categories Custom Menu
= wid Area v
Appearance ' A list or dropdown of categories Use this widget to add one of your custom B TROONC e
Themes menus as a widget.
Widgets Second Footer Widget Area v
ihnis Links Meta
Background Your blogroll Log in/out, admin, feed and WordPress
i el | i & : Third Footer Widget Area v
Header s
Editor
= : Pages Recent Comments Fourth Footer Widget Area v
£% Plugins
Your site's WordPress Pages The most recent comments
&, Users
'E'I!I Tools Recent Posts RSS
M Settings The most recent posts on your site Entries from any RSS or Atom feed
Search Tag Cloud
A search form for your site Your most used tags in cloud format
Text

Arbitrary text or HTML

Figure 3-6: The Widgets settings in the admin panel
Adding the register sidebars () tag to your functions.php file automatically registers a widget area called Sidebar:
<?php register sidebars(); ?>

Your functions.php file is often full with other things, so you will probably not need the opening and closing PHP snippets around
register sidebars().

So what if you want a widget area named Footer? Try this code to pass information to register sidebars ():

<?php
register sidebar(array(‘name’=>’Sidebar’));
register sidebar(array(‘name’=>’'Footer’));
2>

There are two ways for this to occur: one being passed the name Sidebar (which is the default, but since I'm naming them manually, | should
name this one too), and one getting the name Footer.

You obviously can change the name of a widget area by passing a parameter to the name argument, so what other things can you control? The
WordPress Codex page for register sidebars () tells youto pass data to the following arguments:

* name is the name of the widget area

« id is the widget area ID

- before_widget is the code that goes before a widget in the widget area

- after_widget is the code that goes after a widget in the widget area

- before_title is the code that goes before the title (if the widget has one) of widgets
- after_title is the code that goes after the title (if the widget has one) of widgets

The default values are simple enough, and if you've hacked themes before you know them well enough. Widgets go inside 11 tags, and their
titles are wrapped in h2 headings with the class widgettitle for easy access via CSS. By passing other values to the arguments via an array,
you can get more control over how widgets behave in a particular widget area.

To see itin action, check out the Twenty Ten theme’s functions.php; they're making some alterations there. Another example is the Notes Blog
Core Theme (getitfromhttp: //notesblog. com), which features a bunch of widget options. The following code is cropped and altered to fit
our purpose and shows how you can mix default widget settings with more custom options.

<?php
register sidebar(array(‘name’=>'Sidebar’));
register sidebar (array (‘name’=>'Footer’));
register sidebar (array (
‘name’ => ‘Submenu’,
‘id’ => ‘submenu’,
‘description’ => ‘The submenu area, empty by default’,
‘before widget’ => ‘<div class="submenu-nav”>’,
‘after widget’ => ‘</div>’,
‘before title’ => ‘’,
‘after title’ => ‘’
)) i
?>

You'll recognize the top of this widget declaration, which gives you the areas Sidebar and Footer with default settings. Below that, however, is a
slightly more complicated widget called Submenu. This one has special settings for wrapping widgets in a div rather thanan 1i (and should
per definition not sitin a u1, which is common practice). It also puts a span with the class widgettitle around any potential headings through
the before _title and after_title arguments.

Add widget areas to the template files

Right, so now you know how to define widget areas. The only thing you need to know is how to add them to your template files so that they show
up where you want them to. This is even easier thanks to the dynamic_sidebar () function. Just add the following to whichever template file

you want to display your widget area in:
<?php dynamic sidebar(‘Sidebar’); 2>

As indicated in the first line of code, the dynamic_sidebar () that you want to show is the one called Sidebar. If you want to show one named
Footer instead, just swap the name:

<?php dynamic sidebar (‘Footer’); 2>

Simple, right? Just pop in the name of the widget area you want to use in dynamic_sidebar() and you're good to go. And, again, just to clarify:
This isn’t just for sidebars, but for widget areas in general.

So what about that placeholder content then? Well, consider this code:

<?php if (!dynamic sidebar(‘Footer’)) : 2>

<h2>Hey there!</h2>
<p>This is just a placeholder. You need to drop some widgets
here!</p>
</1li>
<?php endif; ?>

When there are no widgets in the widget area, Footer in this case, an 1i containing an h2 heading and a paragraph will show up, telling people
to drop widgets in the widget area. But as soon as someone actually does, the placeholder code will disappear and only the widgets remain. In
other words, if you've got nothing as placeholder text, then nothing will be visible until you drop a widget in the area. This is worth thinking about
if you want to make certain parts of a theme easy to customize.

Put widgets to good use

So what'’s the purpose of stepping away from the default values? Well, it would depend on the theme obviously, but the Submenu example
shown earlier is actually a sound one, at least in principle, since you now have support for menus in WordPress and having submenus is even
better. While WordPress recommends that widget areas are in ul blocks with every widget enclosed in an 11 that might not always be suitable.
And evenifitis, perhaps you have one widget area that would benefit greatly from a different class on the heading, or perhaps evenonthe 11
items for some reason? You'll know it when you need it.

Widgets, in general, are great. The fact that they are drag-and-drop features makes them easy to use. You don’t need to be an experienced
WordPress user to manage widgets, and if that isn’t enough, the ease with which you can add features through the use of plugins that offer
widgets is hard to match.

In short, when looking at the parts of a site that isn’t all about the posts and Pages, but still need to be dynamic, widgets are often the way to go.

Example: Adding a New Widget Area

In this example, you put your newfound knowledge of widgets to the test by adding a new widget area to a theme (Figure 3-7 and 3-8 shows the
before and after views). Which theme? Any theme!

Screen Options Help

g Dashboard 51 Widgets
£ Posts [No Sidebars Defined J
Media The theme you are currently using isn't widget-aware, meaning that it has no sidebars that you are able to change. For information on making your theme
é) widget-aware, please follow these instructions.

Links
] Pages
C) Comments

Appearance v
Themes .
Widgets
Menus
Background

Header

Editor

£5 Plugins
& Users
T} Tools
Settings

Figure 3-7: This is how the Widgets screen looks if you have no widget areas defined in functions.php

8o e_lf BT widgets « Notes Blog — Wor % \E})

€& - C fi| 1% http://notesblog.com/wp/wp-admin/widgets.php » 0O~ F-
W F
w Notes Blog New Post v Howdy, Thord Daniel Hedengren | Log Qut
Screen Options Help

e .

@ |57 Widgets

Es Available Widgets Sidebar v

@3 Drag widgets from here to a sidebar on the right to activate them. Drag widgets back here to deactivate them and

delete their settings. Text
Akismet Archives
E: Text: Buy My Book!
Akismet A monthly archive of your site’s posts
)]
. Search: Search
Calendar Categories are

= A calendar of your site's posts A list or dropdown of categories

(= Tag Cloud: Tag Cloud

&

& Custom Menu Links

Recent Posts: Most R t Post
f'i_(__]\ Use this widget to add one of your custom Your blogroll oSt Recent Fosts
menus as a widget.
Tb Meta Recent Comments: Most Recent Com

Pages

Your site’s WordPress Pages

Recent Posts

The most recent posts on your site

Search

A search form for your site

Log infout, admin, feed and WordPress
links

Recent Comments

The most recent comments

RSS

Entries from any RSS or Atom feed

Tag Cloud

Your most used tags in cloud format

Figure 3-8: By comparison, the Twenty Ten theme’s Widgets screen, obviously with widgets defined in functions.php

1. Open functions.php. The widget declaration is in functions.php, which is located in your theme’s folder. If there isn’t one, which is highly

unlikely, you need to create it yourself. Just create an empty file and name it functions.php.

'
v

2. Find the widget area declaration. Add a widget area called Hypothetical (you can call it anything you'd like if you're doing this on a
theme that you'll want to actually use). You need to find the widget declarations in functions.php. They contain register sidebar () and
you need to add an extra line to it.

3. Add the new widget area. Assume the widget declarations in your theme looks like this:
register sidebar (array(‘name’=>’Sidebar’));
register sidebar (array(‘name’=>'Footer’));
Now just add another line where you use register sidebar () to add your widget area called Hypothetical. (Note that every widget area
ends with a semicolon.)
register sidebar (array(‘name’=>’Sidebar’));
register sidebar (array(‘name’=>’'Footer’));
register sidebar (array(‘name’=>'Hypothetical’));
4. But wait, you need another widget area! This one is called Obsessive and needs some special attention in terms of classes for the 11
and h2 elements that wrap around each widget, and widget heading, respectively. Just add that below your Hypothetical widget area from
Step 3:

register sidebar (array(‘name’=>’Sidebar’));
register sidebar (array(‘name’=>’'Footer’));
register sidebar (array(‘name’=>’Hypothetical’));
register sidebar (array(
‘name’ => Obsessive,
‘id’ => ‘obsessive-widget-area’,
‘description’ => ‘Widget area for obsessive things’,
‘before widget’ => ‘<1li class="widget-obsessive”>’,
‘after widget’ => ‘</1i>’,
‘before title’ => ‘<h2 class="widget-title”>’,
‘after title’ => ‘</h2>’,
)) i
To achieve the special 11 and h2 elements, you pass several parameters to the relevant arguments in the array. To top it off, you also add

an ID and a description.

5. Add the widget areas to the templates. Now that you've created your widget areas, you need to display them somewhere on your site. To
do that, open whatever template file you feel fits, and just add the following code for the first widget area, the one called Hypothetical.
<?php if (!dynamic sidebar (‘Hypothetical’)) : 2>

<h2>Whoa!</h2>
<p>You need to drop some widgets here mate.</p>
</1li>
<?php endif; 2>
If you forget to drop widgets in the Hypothetical widget area, that placeholder text is sure to get your attention, right?

Moving on, the Obsessive widget area should also show up somewhere. However, you may not always be obsessive enough to show
something in that part of the site. So when there are no widgets in the area, it shouldn’t say anything. In other words, it's OK if the Obsessive
widget area is empty sometimes:
<?php dynamic sidebar (‘Obsessive’); 2>
There you go; it's as easy as that to add two widget areas to any theme.

The Power of Custom Page templates

Pages, the static part of your WordPress site’s content that's been there since forever, are in fact a great tool when building more advanced
sites. The traditional blog uses Pages for static content like information about the site, advertisement rates, policies, and similar items. This is
all well and good, but consider this: Some sites consist primarily of static content. That's Pages for you, and there’s more. Since you can apply
Page templates as custom templates in your theme, to your Pages that means that you can do pretty cool stuff just by creating a template and
inserting the code there.

With some creative coding in Page templates you can build just about anything with WordPress. Create the Page in your admin panel, add the
necessary content to it, and do all the funky stuff in the template. Include an outside script, offer alternate content to display — in short: Pages
are one potentially powerful ally in creating The Site.

Create a Custom page template

A theme can have any number of Page templates. The template file hierarchy indicates that the first thing WordPress will look for is an assigned
Page template, which you choose in the Edit Page screen of the admin panel. Obviously your theme will need at least one Page template for
this control to show up (as you see in Figure 3-9, click the arrow to select a template).

After that, you have page-X.php where it first checks to see if X is the Page slug, and then if it is the Page ID. Moving on, WordPress tries to
use the generic page.php, and finally uses index.php. That's all well and good, and sometimes it might be handy to do your custom stuffin a
dedicated Page template using the slug or ID version, but more often you create a Page template that you can pick for several Pages, if you
want to, manually in the WordPress admin panel.

So how do you create a Page template? First, you need a few lines of code at the very top of your Page template file so that WordPress knows
that it is supposed to let you pick it in the admin panel:

<?php

/*
Template Name: My Brand New Page Template
*/
2>

8n0oe

[T ecit Page « Notes Blog — W §
€« > C # 5 http://notesblog.com/wp/wp-admin/post.php?post=4&action=edit » O~ F-
\ﬂ}: Notes Blog New Page v Howdy, Thord Daniel Hedengren | Log Out

Screen Options Help

@ [I_ Edit Page

+~ About the Notes Blog Project .
l_,f' Permalink: http://notesblog.com/about/ | Edit View Page Eieview.Changes
Status: Published Edit

Upload/insert = B 2 & sua HTML

E Visibility: Public Edit
b 7 | link b-quote det ins img ul ol li |code more lookup close tags ') Published on: Oct 10, 2007 @ 8:53 Edit

= ; .

Notes Blog is a WordPress theme concept. It strives to be simple, easily built-upon using add-on themes, but

entirely usable by itself. The concept was created by Thord Daniel Move to Trash m
=] Hedengren, designer and blogger, who needed a theme to build his projects, as well as client sites on.
£ <h2>The Notes Blog Core Theme</h2> Page Attributes
: There are two sides to the Notes Blog project. The first one is the free <a Parent
faad href="http://notesblog.com/core/">Notes Blog Core theme, the one everything is built upon.
T} Anyone can download this theme, modify it, build upon it, and use it for both personal and commercial projects. It it i

islicensed under GPL version 3. . Template

5] v

Default Template 3

Word count: 255 Last edited by Thord Daniel Hedengren on July 17, 2009 at 7:03 am

Order
0
Custom Fields

Need help? Use the Help tab in the upper right
Name Value of your screen.

syntaxhighlighter_encoded 1

Delete Update

Add New Custom Field:

Figure: 3-9: Pick a Page template (in the box in the right column)

Obviously you'll name your Page template something more descriptive. This is what you see in the Page template drop-down box on the Edit
Page screen (in the admin panel).

Below these few lines of code, type your actual Page template. How this looks depends entirely on what you want to do. Perhaps you just want
to alter some things from your regular page.php template, in which case you'd just copy the contents of that file, paste it in your Page template
file, and make your changes.

But hang on, what should your Page template file be called? This is up to you; my-page-template.php works as long as it sits in your theme
folder and has the necessary Page template code at the very top of the file. However, it might be a good idea to name your Page template file
something in the lines of pagetemplate-my-page-template.php. By having “pagetemplate-" before the actual Page template filename, it will be
easier to find the file when working with the theme, especially if you have several Page templates. You shouldn't just put “page-" in front of the
actual Page template filename because WordPress will try and apply it to a slug if you do. Stick with “pagetemplate-" or something similar.

Example: Creating an Archives Page Template
In this example, you create an Archives Page template so that you can set up a Page showing the latest posts, a tag cloud, and all our
categories easily. You display these using template tags like wp_1ist categories () for categories, wp _tag cloud () fortags, and
wp_get archives () fora monthly post list.

1. Find your theme of choice. That's right, this works with any theme out there. Go with the Notes Blog Core theme, available at
http://notesblog.com/core, for this example. You can apply this to just about any theme though (including the Twenty Ten).

2. Copy page.php and rename it page-archives.php. To make it easy to see that the template file is a Page template, name it page-X,
where X is “archives,” in this case. You want to base this Page template on the basic page.php template, so just copy the contents of that
one to a file named page-archives.php.

3. Make it a Page template. At the very top of page-archives.php, add the code snippet that tells WordPress that this is a Page template.

Name it “Archives,” since that's what it is.

<?php

/ *

Template Name: Archives

*/

2>
4. Add the archive goodness. Keep the loop around in this template to make it easy to alter the text at the very top of the archives page,
should you want to. Find the loop, and then find the the content tag. Below it, add the archives code, which is this:

<h2><?php e(‘Browse by Month:”, “notesblog”);?></h2>

<?php wp get archives(‘type=monthly’); 2>

<h2><?php e(“Browse by Category:”, “notesblog”);?></h2>

<?php wp list categories(‘title 1i="); 2>

<h2><?php e(“"Browse by Tag:”, “notesblog”);?></h2>
<?php wp_ tag cloud(‘smallest=8&largest=28&number=0&orderby=name&order=ASC’); 2>

What you have here is an h2 heading that is localized so that translated versions of the theme can edit it. Then there’s a u1 list block that
outputs the monthly archive links. Next, another h2 and a category list inits own ul block. Finally you've got an h2 heading and then the tag
cloud, and that’s about it.
Just for clarity’s sake, here’s the full page-archives.php, which is now done:
<?php
/*
Template Name: Archives
*
>
<?php get header(); 2>
<div id="content” class="widecolumn”>
<?php if (have posts()) : while (have posts()) : the post(); ?>
<div id="post-<?php the ID(); ?>” <?php post class(); ?>>
<hl><?php the title(); ?></hl>
<div class="entry”>

<?php the content(); 2>
<h2><?php e(“Browse by Month:”, “notesblog”);?></h2>

<?php wp get archives(‘type=monthly’); 2>

<h2><?php e(“"Browse by Category:”, “notesblog”);?></h2>

<?php wp list categories(‘title 1li="); 2>

<h2><?php e(“"Browse by Tag:”, “notesblog”);?></h2>
<?php

wp tag cloud(‘smallest=8&largest=28&number=0&orderby=name&order=ASC’); ?>

</div>
</div>
<?php endwhile; ?>
<?php endif; ?>
</div>
<?php get sidebar(); ?>
<?php get footer(); 2>

5. Upload page-archives.php to your theme folder. You obviously need to upload the Page template to use it, so do that now. Place itin
your theme’s wp-content/themes folder.

6. Create the Page in WordPress. You need to create a Page for your archives in WordPress. For this example, keep it simple and call it
Archives (see Figure 3-10), and make sure that it gets the permalink “archives” since that will look good. A short blurb in the content area
introduces the visitor to your Archives Page. Above all, it shows the archives functionality since it is output where the content () is, and
you put your archives code below it.

7. Pick the Archives template and admire your work. The only thing left to do is to pick the Archives template in the drop-down box to the
right on your Edit Page screen. Save the Archives Page (as in Figure 3-11), and it will use your template, which means that it will include and
output the code from page-archives.php.

8 0 ef BT Add New Page < Notes Blog x|\ &5

€& 5 C #A 1% http://notesblog.com/wp/wp-admin/post-new.php?post_type=page » O F-
W
\\}) Notes B]og Pages v Howdy, Thord Daniel Hedengren | Log Out
Screen Options Help
it Add New Page
+ Archives gt
Permalink: http://notesblog.com/archives/ | Edit Save Dealh P
@@ Upload /! Status: Draft Edit
load/Insert J Vi | HTML
[ﬂ F BEag s Visibility: Public Edit
b 7 link b-quote del ins img ul ol |li code more lookup close tags [Publish immediately Edit
& You can browse the archives in any way you'd like using the links below.
- Move to Trash m
& Page Attributes
g}\ Parent
(no parent) H
T
Template
y Default Template +
Word count: 10 Draft saved at 6:16:56 am. Driex
0
Custom Fields
Need help? Use the Help tab in the upper right
of your screen.
Discussion
Slug
Author

-

Figure 3-10: Create the Archives Page

Screen Options Help

i | Edit Page

Page draft updated. Preview page

Archives Publish

Permalink: http://notesblog.com/archives/ | Edit Seva Deaft Preview

Upload Status: Draft Edit
oad/Insert il
- == 20 sunl | filses Visibility: Public Edit

b | i | link b-quote @et ins | img ul | ol Ii | code more lookup close tags "] Publish immediately Edit

Move to Trash [publish]

You can browse the archives in any way you'd like using the links below.

Page Attributes

Parent

(no parent)

an

Tl b

Default Template

4 ¥ Archives l

Word count: 13 Last edited by Thord Daniel Hedengren on August 29, 2010 at 6:18 am ordar

]
Custom Fields

Need help? Use the Help tab in the upper right
of your screen.

Discussion

Figure 3-11: Select the Archives Page template

Figure 3-12 shows you what you have created, pretty simple, huh?

()
e nf Archwes X Wae
€& 2> C & 1% http://notesblog.com/archives/ » O~ F-

Notes Blog

Core Aboutthe Project Subscribe The Book Contact Information

! C] . Core is currently out in version 1.0.2. Get it now!

BUY MY BOOK!
You can browse the archives in any way you'd like using the links below.

s | Wrote a book. It is called

i e . Smashing WordPress

Beyond the Blog and is
available now, in full color
and everything. Among other
things, you can learn a lot
about what you can do with

Browse by Month:

e August2010

. May 2010 the Notes Blog Core theme

* April 2010 . X Read more about Smashing

« March 2010 WordPress WordPress: Beyond the Blog
on TDH.me.

« December 2009

« November 2009 SEARCH

o October 2009 (Search)

« September 2009

¢ August 2009 TAG CLOUD

* July 2009 2010 A Perfect Day D@18 tugs Carmine Lives changelog

« June 2009 child themes core theme CSS design formatting GPL

. February 2009 Howto Justin Tadlock license maintenance Media Temple

« January 2009 Menus moving servers notesblog.com Notes

» December 2008 BIlog COre scws sig iome sisin sugins

« November 2008 roadmap screenshot Sennbrink Konsult Smashing

« October 2008 WordPress: Beyond the Blog statistics status report .

Subscribe 1o Comments TDH tdhedengren.com teaser
September 2008 translations Twiter upgrade Widgets Reloaded

Figure 3-12: The somewhat unstyled end result on notesblog.com/archives/

Finding Your Way With custom Menus

As of WordPress 3.0, you can create menus from the admin panel. This fancy little thing can be likened to a widget area, but for menus created
on the Menus interface in WordPress admin panel, under Appearance, if your theme supports it. I'm likening them with widget areas for two
reasons:

+ As with widget areas (also known as dynamic sidebars), you define them in functions.php and then add the defined areas to your theme’s
template files.
» Managing the actual menus in the admin panel is fairly similar to widget management.

There’s also the fact that your Menus (as in menus created with Menus in the admin panel — yes, it's the pages/Pages semantics all over

again) will work perfectly well on a lot of widget areas thanks to the Menus widget (see Figure 3-13). That’s right. You can create a menu using
Menus and drop it in any widget area, using said widget.

8eno

=i/ [T Menus « Notes Blog — Word' > Wy
€ > C |# 1 htp://notesblog.com/wp/wp-admin/nav-menus.php » O- F-
:\ﬂ/: Notes BlOg New Post v Howdy, Thord Daniel Hedengren | Log Out

Screen Options Help

@ |2 Menus

The current theme does not natively support menus, but you can use the "Custom Menu" widget to add any menus you create here to the theme's sidebar.

5P

(s -

a9

3?‘ - . Menu Name

o

@
To create a custom menu, give it a name above and dlick Create Menu. Then choose items like pages, categories or custom
links from the left column to add to this menu.

After you have added your items, drag and drop to put them in the order you want. You can also click each item to reveal

additional configuration options.

When you have finished building your custom menu, make sure you click the Save Menu button.

Figure 3-13: The Menus interface on a theme with no official support for it

Before you get to the actual code for adding this feature, remember that Menus are WordPress 3.0 and later only. If you need to support older
versions, you can't use it. If you still want to add it, check whether the function exists, just like when you include widget areas.

If you do use the Menus feature on an older version of WordPress, it will degrade to displaying Pages withwp_1ist pages (). While your
menu could very well consist of just links to Pages, that is not always the case. If you're building menus for your site and need to keep it
backwards compatible, you should stay clear of the Menus feature. After all, you can’t just not show a navigational element, and more often than
not you don't want that list of Pages that wp_1ist pages () will get you. Better to use a traditional widget area and make sure that the use of
the menu widget element (see Figure 3-14) will look good for your 3.0 users.

DeclarE a Menu area
As with widget areas, you need to define menu areas in your theme’s functions.php. The code is simple enough:
function register menus () {
register nav menu(‘top-navigation’, (‘Top Navigation’));

}

add action(‘init’, ‘register menus’);

08/ —
8 O o.f BT widgets « Notes Blog — Wor x Ny

€ 2> C M 1% http://notesblog.com/wp/wp-admin/widgets.php

> O- £

Available Widgets

= Drag widgets from here to a sidebar on the right to activate them. Drag widgets back here to deactivate them and

o
delete their settings.

Akismet

ﬁ: Akismet

&J
Calendar

@ A calendar of your site’s posts

>

& Custom Menu

4 >} Use this widget to add one of your custom
menus as a widget.

Th

[

Pages

Your site's WordPress Pages

Recent Posts

The most recent posts on your site

Search

A search form for your site

Text

Arbitrary text or HTML

Archives

A monthly archive of your site’s posts

Categories

A list or dropdown of categories

Links

Your blogroll

Meta

Log in/out, admin, feed and WordPress
links

Recent Comments

The most recent comments

RSS

Entries from any RSS or Atom feed

Tag Cloud

Your most used tags in cloud format

Footer A

Footer B

Footer D

Custom Menu

Title:

Select Menu: | Top menu +

Delete | Close m

Figure 3-14: A Custom Menu widget on the Available Widgets screen of your admin panel

This adds a menu called Top Navigation to your theme, for use on the Menus screen in the admin panel. The last line actually adds the

functionality; without it nothing will happen.

As with widget areas, you can add several menu areas at once. The following code adds areas meant for both the sidebar and the footer. You

need to declare these in an array; the preceding code will only work with a single menu.

function register menus() {
register nav menus (
array (
‘top-navigation’ => (‘Top Navigation’),
‘side-menu’ => (‘Side Menu’),
‘bottom-navigation’ => (‘Bottom Navigation’),)

)7
}

add action(‘init’, ‘register menus’);

That's it! The only thing left is to actually add the menu areas to your theme’s template files.

Add A Menu area to your template files

As you would expect, there’s a template tag for adding a menu area to your theme. The template tag is called wp_nav_menu (), and if you have
only one menu added, it will output that, otherwise default to a list of Pages viawp 1ist pages ().

Obviously you want to control which menu goes where, so you have to let wp nav_menu () know. Starting with the menu called Top Navigation
in the previous example, pass the theme location parameter from your declaration to wp_nav_menu (), hence teling WordPress which menu
area you want it to output.

<?php wp nav menu(array(‘theme location’ => ‘top-navigation’)); 2>

Adding a menu to this area using the Menu admin panel will output it, enclosed in a div with the CSS class menu. That's default output, but you
can control that. Suppose your sidebar menu from above wants to sitinan 11 instead, because itis enclosed ina ul#sidebar item.

<?php wp nav menu(array(
"container’ => ‘1li’,

‘container class’ => ‘menu-sidebar’,
‘theme location’ => ‘top-navigation’
))i 2>

As you can see, the code uses a different class for this one in order to style it differently. You can also add an ID and control what goes before
and after the actual menu within the area, to name a few things. Something that might be handy is a different fallback tag, since
wp_list pages () might not be ideal at all times. Have it output your categories instead, using wp 1ist categories():

<?php wp nav_menu(array (

"container’ => ‘1li’,
‘container class’ => ‘menu-sidebar’,
‘fallback cb’ => ‘wp list categories’,
‘theme location’ => ‘top-navigation’

))i 2>

Pretty neat, huh?

Example: Adding a Menu Area

In this example you add an area for menus in a theme? It's really simple, and you can throw out any hard-pressed custom menu solutions you
may have found or created over the years.

1. Declare the menu. Call this menu “Main Menu” and give it the location name “main-menu” since that just makes sense. The former is
what you see in the admin panel, the latter will be used with the wp_nav menus () tag in the template files. The last line adds the functionality.
Oh, and you use the array format here despite not needing to. This makes it easy for you to add more menus, if you want to.

<?php
function register menus() {
registerfngvimenus(
array (
‘main-menu’ => (‘Main Menu’)
) 7
}
add action(‘init’, ‘register menus’);
>

2. Create a menu. Now create a menu so that you have something to output. In the admin panel, click Appearance, and then Menus. Just fill
it with something suitable. Perhaps add a Page, a category, and a custom link to some other site that you have.

3. Add wp_nav_menus(). Right, so now you add your spanking new menu to your theme. You'll use it in header.php, but you can put it
anywhere of course.
<?php wp _nav _menu(array(‘theme location’ => ‘main-menu’)); 2>
That's it!
4. A bit short and simple, right? Let's add another menu area for good measure, adding to the code in functions.php:
<?php

function register menus() {
register nav menus (

array (
‘main-menu’ => (‘Main Menu’),
‘footer-menu’ => (‘Footer Menu’)
) 7
}
add action(‘init’, ‘register menus’);

2>
Now add this to your footer.php file (but again, you could use it anywhere). Because you want this menu to behave slightly differently, give it
another CSS class:
<?php wp nav menu(array (
"container class’ => ‘menu-footer’,
‘theme location’ => ‘top-navigation’
)) 2>
Obviously you can style this in style.css (or any other stylesheet that you might be loading), so just make the type bold for good measure:

.menu-footer {
font-weight:bold;

}
Still simple; still easy to work with.

Changing your Header Image

The feature that allows you to change the header image (Figure 3-15 shows the defaultimage in the Twenty Ten theme) has been created a ton
of times in the past, but with WordPress version 3.0, you actually have a custom header function to work with. This is primarily aimed at simpler
sites where changing the image header is the only customization needed, but it could come in handy when building larger sites as well.

The Epic Test Blog

The header image

TTHL i e ¥ % = found in header.php

Figure 3-15: The header image as it is used in the Twenty Ten theme

Adding custom headers is simple enough, and done in functions.php. First you define the data for the header with four constants. Then you write
two functions: one for theme view and one for admin panel view. Finally you enable the whole thing with add_custom image header () with
said functions passed as parameters.

Define the header in functions.php
The basic definition of the header listed in the Codex are these:

<?php
define (‘HEADERfTEXTCOLOR' , ‘Efffff’);
define (‘HEADER IMAGE’, ‘%$s/images/default header.jpg’);
// %s is the template dir uri
define (‘HEADERilMAGEiTNIDTH' , 175);
// use width and height appropriate for your theme
define (‘HEADERfIMAGEiHEIGHT’ , 200);
2>

However, | do not recommend the second line in the preceding code snippet, which fetches the default header image from your theme’s
directory. By using the following line instead, you fetch the defaultimage using get bloginfo () and its parameter stylesheet directory.

define (‘HEADER IMAGE’, get bloginfo(‘stylesheet directory’)
‘/images/banner.jpg’) ;

Now, WordPress will use the stylesheet directory rather than the theme’s directory, which means that if you're building a child theme based on
this particular parent theme, it looks in the child theme’s directory, since that is where the primary stylesheet sits. Obviously you can just go with
the default lines if you know that you'll never build a child theme upon your theme. The second example works either way, so you may as well
use it.

Display the header in your theme

The functions that show the header image are simple enough, and are passed to add_custom image header () inthe end. First, you need
one to display the image in your theme, which you attach to the wp_head action hook — basically when WordPress starts to load your site.
What you put in the function is a CSS that will then output the header image.

<?php
function site header style() {
?><style type="text/css”>
#header {
background: url(<?php header image(); ?>);
}
</style><?php
}
2>

Note that you need to step out of PHP for a bit unless you want to echo the whole stylesheet part. Obviously you could make this as advanced
as you'd like, with lots of styles and nifty stuff.

The second function shows the header image in the admin panel. Here you just add width and height to a pre-defined CSS ID called
#headerimg, which is what you use to display the header in the custom header admin panel. There is little point in messing with this function,
but obviously you can.

<?php
function admin header style() {
?><style type="text/css”>
#headimg {
width: <?php echo HEADER IMAGE WIDTH; ?>px;

height: <?php echo HEADER IMAGE HEIGHT; ?>px;
}
</style><?php

2>

Last but not least, you need to enable the whole thing and pass these two functions as parameters using add_custom image header (). The
first parameter is the function that the theme uses to display the header, and the second parameter is used in the admin panel.

add custom image header (‘site header style’, ‘admin header style’);
The whole thing would look like this in functions.php:

<?php
define (‘HEADERfTEXTCOLOR' , ‘Efffff’);
define (‘HEADER IMAGE’, get bloginfo(‘stylesheet directory’) . ‘/images/banner.jpg’);
define (‘HEADERfIMAGEiTNIDTH' , 175);
define (‘HEADERfIMAGEiHEIGHT’ , 200);
// The site header function
function site header style() {
?><style type="text/css”>
#header {
background: url(<?php header image(); 2>);
}
</style><?php
}

// The admin header function
function admin header style() {
?><style type="text/css”>
#headimg {
width: <?php echo HEADER IMAGE WIDTH; ?>px;
height: <?php echo HEADER IMAGE HEIGHT; ?>px;
}
</style><?php
}

// Enable!
add custom image header (‘site header style’, ‘admin header style’);
?>

Example: Adding a Custom Header

In this example, you add a custom header to a theme; any theme that doesn’t support it already will do. You do the whole thing in functions.php,
so open that.

1. Define text color and default header. You need to add four constants to make sure that the custom header feature will work. Start by
defining the text color and the default image, adding it to functions.php.
<?php
define (‘HEADER TEXTCOLOR’, ‘ffffff’);
define (‘HEADER IMAGE’, get bloginfo(‘stylesheet directory’) . ‘/img/header-default.jpg’);
2>
2. Set the image width and height. You want to decide the header image’s width and height. This is important because the admin panel

will scale to this should you upload something larger. This example is 940 pixels wide and 130 pixels high, but you should obviously make
sure this suits the header area in your theme.

<?php
define (‘HEADERiTEXTCOLOR’ , ffffff’);
define (‘HEADER IMAGE’, get bloginfo(‘stylesheet directory’) . ‘/img/header-default.jpg’);
define (‘HEADERiIMAGEiY/\TIDTH' , 940);
define (‘HEADERiIMAGEiHEIGHT' , 130);
>

3. Add some header style for your theme. The following code adds the header image, using a function that you later can include when
enabling the feature.
<?php
define (‘HEADER TEXTCOLOR’, “ffffff’);
define (‘HEADER IMAGE’, get bloginfo(‘stylesheet directory’) . ‘/img/header-default.jpg’);
define (‘HEADER IMAGE WIDTH’, 940);
define (‘HEADER IMAGE HEIGHT’, 130);
// The site header function
function site header style() {
?><style type="text/css”>
div#header {

ackground: url(<?php header image(); ?>);
}
</style><?php

?>

This code adds your new header image as a background image to div#header; obviously your theme may have another element where
you'd like the header to show up. You might also want to add some borders or other CSS to make it fit into your theme of choice.

4. And some style for the admin. You need another function for display in the admin panel. You can just set width and height to the ID
#headerimg since that's what's used in admin.
<?php
define (‘HEADER TEXTCOLOR’, ‘ffffff’);
define (‘HEADER IMAGE’, get bloginfo(‘stylesheet directory’) . ‘/img/header-default.jpg’);
define (‘HEADER IMAGE WIDTH’, 940) ;
define (‘HEADER IMAGE HEIGHT’, 1 30);
// The site header function
function site header style() {
?><style type="text/css”>
div#header {
background: url(<?php header image(); 2>);
}
</style><?php
}
// The admin header function
function admin header style() {
?><style type="text/css”>
#headimg {
width: <?php echo HEADER IMAGE WIDTH; ?>px;
height: <?php echo HEADER IMAGE HEIGHT; ?>px;
}
</style><?php

?>

5. Enable the whole thing. Let's wrap this up by enabling the custom header feature. You do that with add_custom header image () to
which you pass first the function for the header in our theme, and then the function for use in the admin panel.
<?php
define (‘HEADER TEXTCOLOR’, ‘ffffff’);
define (‘HEADER IMAGE’, get bloginfo(‘stylesheet directory’) . ‘/img/header-default.jpg’);
define (‘HEADER IMAGE WIDTH’, 940);
define (‘HEADER IMAGE HEIGHT’, 130);
// The site header function
function site header style() {
?><style type="text/css”>
div#header {
background: url(<?php header image(); 2>);
}
</style><?php
}
// The admin header function
function admin header style() {
?><style type="text/css”>
#headimg {
width: <?php echo HEADER IMAGE WIDTH; ?>px;
height: <?php echo HEADER IMAGE HEIGHT; ?>px;
}
</style><?php
}

// Enable!

add custom image header(‘site header style’, ‘admin header style’);
?>

Adjusting Your Site Background

The custom background feature is another handy little item you can use from your theme. It lets you alter the background image or color of a
site. In fact, what it does alter is the stylesheet for the body tag, so it might not work as expected if your theme has a lot of styling in the body
already.

Adding the feature is almost ridiculously simple. Just add the following tag to functions.php and the panel pops up in the admin panel, and that's
it. Yes, that’s right, this tiny template tag, along with the feature activation tag that you add to the code, outputs the necessary style code, and so
on, in your theme. Assuming your theme doesn’t do something that nulls out the included styles, it should just work.

<?php

// Enable custom backgrounds
add theme support (‘custom-background’);

// Activate the admin panels
add custom background() ;
2>

This attaches the stylesheet code to the wp_head action hook. The only thing left to do is make sure that your theme has the template tag
body class () inyour body tag. It works much like post class () does for your post container (usually a div), adding styles that gives you
additional control. This line should be in your theme’s header.php, otherwise you should replace your body tag with it:

<body <?php body class(); ?>>

You can get the nitty-gritty details in the Codexhttp: //codex.wordpress.org/Function Reference/add custom background, but
most likely you don’t want to mess with anything here. Just embrace the simplicity of this feature; you'll have plenty of time to pull your hair out
over annoying features later on!

Wrapping It Up

By now you should have a better idea of what you can do with themes, what features are just around the corner, and so on. The knowledge of
how you work with template tags and pass parameters to them will make it a lot easier when looking up things online for your projects, and
conditional tags will make your themes more flexible.

From here on I mix practical with conceptual, putting what you've learned to good use. You've got the basics now, so it's time to start doing
things, beginning with child themes. Child themes are a wonderful way to work with themes, further separating the code from the design. That's
up next!

Part ll: Hacking A Theme

Chapter 4: Using Child Themes

Chapter 5: Choosing a Theme

Chapter 4: Using Child Themes

So you think you know all you need to know about theming to get your hands dirty, eh? In a way you do. Now you can hack away at just about any
theme, which you did in Part I; but, there is more to it still.

Theme design is comprised of many elements. You've got your template tags, conditional tags, custom post types and taxonomies, custom
backgrounds and headers, widget areas, and so on. These things are cool, and important for the theme designer to know. A veritable key to the
themes universe, as well as to a beautiful and feature-rich WordPress site.

But what is often overlooked, and ironically the most important thing that can save you time and headaches, are child themes. If you want to
design a WordPress theme by altering an existing one, you can take it to the next level with a child theme.

The Child Theme Concept

As the name implies, child themes rely on another theme that serves as a parent for the child. The child theme borrows everything from the
parent, unless the child theme contains the necessary code itself. So in other words, if your child theme has a single.php template file, it'll use
that, but if it doesn't, it'll use the one from the parent theme.

Why are child themes so great?

First of all, it depends on what you're trying to do. Child themes are not always the solution, especially if you're looking at heavyweight sites with
tons of visitors and every byte counts, and costs money. Since a child theme often overrides parts of its parent theme, this may result in some
code overhead. It is worth keeping in mind when deciding if a project should use a child theme or not.

That aside, the brilliant part of a child theme is that you can move all your code into a single theme: the parent theme folder. In other words, your
original theme (that is, the parent) acts as a framework that contains all the core functionality, such as the content loops (although you can
override those too, of course), basic markup, template files, and so on. In short, everything that is tied to features within WordPress sits in the
parent theme. Whenever a new feature is rolled out in a new version of the software, you change it in your parent theme, leaving the child theme
unaffected and saving you time. The same applies for bugs and other changes you may need to change over time. This is especially true if you
have several sites sharing the same parent theme, which | get to in a bit.

Another way to use child themes is when you download a theme that you want to change. Put the change in the child theme and let the parent
theme author worry about keeping it up to date. This leaves you with just making sure that updates are applied properly. When you update the
parent theme, none of your own edits will be overwritten, which is the case if you hack the theme itself. Because your work sits in the child
theme, it isn’t affected by an update to the parent. This, incidentally, is the only sound way to hack a theme, if you plan on following its
development cycle.

So what you've got is two ways to work with child themes. If you've found a theme you like that you want to alter a bit, you put your changes in a
child theme and continue to update the parent. Or, if you've developed a theme of your own that you plan to use as a basis, the parent theme,
that is, to several sites (I discuss this later in this chapter), then you're responsible for the parent theme updates. When applying these updates,
yoU'll be rolling out your new features automatically. Figure 4-1 shows a site that uses three child themes.

ann

Gt The B Tt Blog | buit &

& 3 C M e lloclhost B8 w » 0O- F-

The Epic Test Blog

Hello world!
By ToH | Published: SEPTEMBER z. » To scarch, type and hit enter

‘Welcome 10 WordPress. This is your first post. Edit or delete it, then start |
blogging!

ann -

1[0\ et
| @os

| e+ 0 8

The Epic Test Blog
g The Epic Test BlOg (icer averuss wonsrasas urs

The Epic Lorem Ipsum Post

The Epic Lorem Ipsum Post

Figure 4-1: The Thematic theme with a few child themes

Get them from http:/themeshaper.com

How Child Themes Work

Child themes are easy to create, as long as you grasp the basics (see Figure 4-2 for an overview of child themes and template files). You are
building a theme that consists of, in its most minimal form, a style.css template file. A child theme can also contain any other template files,
including functions.php, as well as images, Java Scripts, and so on. In all, it is a regular theme, with the exception that it needs a parent theme.

The files in the child theme sit in a folder, just like all other themes. Template files are created and built in the same way. Really, you need to
understand that a child theme is, in every way, a WordPress theme. The only difference is that it isn’t complete by itself. It needs its parent.

Every file in a child theme automatically overrides its namesake in the parent theme (except functions.php, which | get to in a bit). That means
that if you have a category template (being category.php) in your child theme, and also in your parent theme, the child theme file will be used.
WordPress checks the child theme for templates first, and then the parent.

You could have a template file for everything in your child theme, essentially making your parent theme unnecessary. | probably don't have to
point out how unnecessary that is, as the whole point for using a child theme is to separate child theme changes from the parent theme. You
could liken it to how you separate PHP and HTML code from CSS styles with an external stylesheet.

Child Theme

only has the template files you want to change

loop-single.php home.php

Parent Theme

with a complete set of template files

L&l TOH.me

tdh.m

I I N S N ——
ABOUT 1

"BOOK ST}

9

I wrote a book. It is called Smashing WordPress: Beyond the Blog and is available

from Amazon and other fine online retailers.

¥

i

Figure 4-2: A schematic overview of how child themes work

Creating a child theme

Creating a child theme is easy, which is a good thing since you'll have your hands full building cool sites as itis. The only file you need to create
is style.css, but most likely you'll want to add a couple of template files as well. Anyway, style.css is the only mandatory one, and it is actually just
one puny little extra line of code needed to tell WordPress that this is a child theme:

Template: my-template-theme-of-choice

Just swap “my-template-theme-of-choice” to whichever theme you'd like to use as a parent theme. Do keep in mind that you want to type the
parent theme’s folder name here, not the actual name! So for Twenty Ten, you don’'t type Twenty Ten (the theme name) but rather the folder
name, which is twentyten. If you're uncertain what the folder is, just check wp-content/themes to find out. Assuming your parent theme is
actually uploaded to that folder, that is. It needs to be, after all.

That little template line goes in the familiar top block of style.css in your theme declaration. In the following code, I've added it to a dummy child
theme header, just to show it in its right element.

/*
Theme Name: My Dummy Child Theme

Theme URI: http://my-dummy-url.com

Description: My dummy theme description for my dummy child theme.
Author: My Name

Author URI: http://my-url.com/

Template: twentyten

Version: 1.0

*/
That's that, actually. With a style.css in a folder, uploaded to your wp-content/themes folder just like any other theme, along with the parent

theme also residing in the themes folder, you're ready to go. You'll find your child theme in the WordPress admin panel under Appearance
settings in Themes. You activate it there, just like any other theme.

Getting parent theme styles into a child theme

However, you probably want one more thing in your style.css, besides any extra styles for your child theme. Template files in child themes
override the ones in the parent theme. So your child theme loads its style.css file, and not the one in the parent theme. You'll then lose all the
styles from the parent theme, which is probably not what you want to happen.

Luckily there is an easy way to remedy that: Just import the parent theme’s stylesheet first into your child theme’s style.css, but place it after the
theme header.

/*

Theme Name: My Dummy Child Theme

Theme URI: http://my-dummy-url.com

Description: My dummy theme description for my dummy child theme.

Author: My Name

Author URI: http://my-url.com/

Template: twentyten

Version: 1.0

*/

@import url(‘../twentyten/style.css’);
Now you can add whatever styles you need for your child below the e import rule. Load your parent theme’s stylesheet first to make sure that
you have a basis to work on. Simple and neat. If your parent theme is built around several stylesheets, you may need to import them too, either
in the child theme’s style.css, or inits header.php (if you add one).

Finding images in child themes

Another thing worth knowing before you build a child theme for real is how WordPress finds images that reside in the child theme’'s folder.
Normally you use the bloginfo () template tag with the template directory parameter to find your theme’s folder when including images in
you template files.

<img src="<?php bloginfo(‘template directory’); ?>/image.jpg” alt="Alt texts are nice” />

You can do that in your child theme as well, but it will actually lead to your parent theme’s folder. It is, after all, the parent theme directory.
Although it may seem a bit confusing, it does make sense.

Now, you want to be able to include images in your child theme as well, and output them in the same easy fashion that you're used to. That's
why I resort to the stylesheet directory parameterinstead. The following code tells bloginfo () to look for where the primary stylesheet
sits (which is style.css, of course), and points us to the child theme’s folder.

<img src="<?php bloginfo(‘stylesheet directory’); ?>/image.jpg” alt="Alt texts are nice” />

That you can pull images from both your child theme folder (and subdirectories within it) and your parent theme’s folder (again, subdirectories
too) can be very handy, so keep itin mind.

Functions and child themes

The functions.php template file is the only one that doesn’t behave like the rest of the flock, and it should come as no surprise that it is
functions.php. Your child theme can have a functions.php file that contains just about whatever you want as usual, but it won’t actually replace the
file in your parent theme. Rather, if there is a functions.php file in a child theme, WordPress loads it first, before loading functions.php in the
parent theme. Yes, both files are loaded. The file in the child theme goes first.

What does this mean? Well, first of all, if you need to do away with any function in the parent theme’s functions.php, you can deregister that
function. This one removes the custom Read more feature twentyten excerpt more inthe Twenty Ten theme for example.

remove filter(‘excerpt more’, ‘twentyten excerpt more’);

You could also take said function and make it do something else. Let's just change the text that is output when you use the Read more feature.
This code snippet works in a child theme using Twenty Ten as a parent theme because it will change its function (twentyten excerpt more
mentioned above). It starts with a function, which | apply to the action hook excerpt more that is already present in the Twenty Ten theme.
However, since Twenty Ten already has a function attached to that (that is, twentyten excerpt more), | need to deregister that before
registering our brand new one, called custom excerpt more.

// The kind of function I want
function custom excerpt more ($more) {

return ‘’ . get the title() . ' 1is over here!’;
}
// Remove the default twentyten excerpt more from the excerpt more hook
remove filter(‘excerpt more’, ‘twentyten excerpt more’);
// Bdd our new function from above, custom excerpt more, to the excerpt more hook
add filter (‘excerpt more’, ‘custom excerpt more’);

Not very hard at all, right?

So your child theme’s functions.php file won't actually overwrite the functions in the parent theme’s functions.php unless you want it to. That
means that you can keep them around (probably a good idea more often than not). Or, you can load them up with new stuff that fits your child
theme better. And you can add new functions to the child theme’s functions.php, completely independent of the parent theme. You don’t have to
do things with the parent theme’s functions at all, you can do new stuff too.

Example: Creating a Simple Child Theme

Now you can put your spanking new knowledge to good work by creating a simple child theme for the Twenty Ten theme (Figure 4-3 shows the
default WordPress theme). This child theme won’t change much, just move the sidebar from the right-hand side, to the left-, for this particular
project.

anom
/ \&s The Epic Test Blog | Just an 5P\
€ 9 C i % http//localhost:8888/wp3/ » O~ F-
The Eplc Test Blog Just another WordPress site
gy
it
. 14 '
L1 J,‘Hf;-. T -
e = - b g
D ot =
The Epic Lorem Ipsum Post (Search)
Posted on September 2, 2010 by tdt
Archives
Lorem ipsum dolor sit amet, eleifend sodales sed urna fermentum. A mi. Et tempus = September 2010
massa convallis bibendum lectus dui. Feugiat sit donec at, mi nullam molestie, arcu lacus Meta
lacinia placerat etiam, nunc quis donec ac semper vivamus donec, mollis ut donec tellus. Rt g
Mi amet, condimentum fringilla dolor nisl, nec molestie, phasellus orei, metus nisl « Log out

sollicitudin sed accumsan felis. Eget et viverra metus felis, libero viverra dui gravida.
Felis ridiculus sociis, odio per condimentum elementum in non. Proin aliquam aliquet
aenean felis, nec sapien cras pretium diam lacinia odio, arcu et cras erat quis aliquet,
egestas libero auctor porttitor pellentesque. Ac vehicula, enim non phasellus pede vitae,
eu wisi possimus posuere pulvinar sagittis sociosqu, nonummy feugiat, ultricies hendrerit

orci mi diam. Laoreet nonummy pede tempor suscipit. Vel vestibulum pellentesque

Figure 4-3: Twenty Ten fresh out of the box

1. Create the child theme. Create a folder for your child theme and name it Twenty Ten Left Sidebar. Name the folder twentyten-1s, that
way it will be easy to find in your FTP software in the future, sitting next to the Twenty Ten folder.

Every child theme needs a style.css file with the theme information, so create a brand new file. Get the necessary theme header information

into it, along with the import rule that loads the Twenty Ten stylesheet. You want that too, after all.
/*
Theme Name: Twenty Ten Left Sidebar
Theme URI: http://tdh.me/wordpress/
Description: A simple child theme for Twenty Ten that moves the side column to the left.
Author: Thord Daniel Hedengren
Author URI: http://tdh.me/
Template: twentyten
Version: 1.0

This here is just to show that you can add a comment
here as well. Fancy huh?

/i Import the Twenty Ten stylesheet */

@import url(‘../twentyten/style.css’);
2. Find the elements to change. Right, so you want the sidebar on the left rather than on the right. This is a simple positioning issue that
you can address in your style.css file in the child theme, but you still need to figure out what you want to change. Depending on your Web
browser, you'll want to use different kinds of tools to inspect the code (for example, Firebug for Firefox, the Inspect Element right-click
command in Chrome and Safari, and so on). Use whatever you usually use to inspect HTML files from your Web browser.

Some inspection shows that the content area (found in Figure 4-4) is controlled by div#container, and the right column (found in Figure 4-
5) uses div#primary for positioning. Actually, div#secondary is used as well according to the code, so add that in there too.

‘ Chrome Arkiv Redigera Visa Historik Bokmarken Fénster Hjilp Q sicisepm FR O = @ 240 tors 1735 Q
ano Developer Tools - http://localhost:8888 fwp3/ ¢ =
- ust anc X P
) B e 'y { 7d C A" ol g y
- o localhost:8888/wp3/

¥ Styles E - 28
¥v<html dir="1tr" lang="en-US"> z
» <head>.</head> -
¥<body class="home blog logged-in"> 5/ ributs
Yediv id="wrapper" class="hfeed"> i

roontal [wp3 fwp-co [the
div id="header"s_</di
b:!fz ;header -—>) B float: left;
vediv id="main"> » margin: @px -24@px @px @px;
width: 100%;

¥<div id="container">

¥<div id="content" role="main">

¥<div id="post-1" class="post-1 post type-post hentry category-uncategorized">
p» <h2 class="entry-title">.</h2> —tt e
» <div class="entry-meta'>.</div>
<!=— ,entry-meta —> e
v=div class="entry-content">
> <pr.</p> » background: transparent;
</div> » border: @px;
<!-— .entry-content —> » —-
»<div class="entry-utility"=_</div> » padding: Opx;
<!l— .entry-utility — vertical-align: baseline;
=/div> .
<!-— #Fpost—## ——>
<fdive display: block;
<!-- #content —-> Inherited from body.home.blog.logged -in
</div> body, input, text B8/wp3 /wp-co i by tdh
<!-— #container —-> —
¥v<div id="primary" class="widget-area" role="complementary"> bod e 1888/wp3 /wp-content/the o y b
e ST ol il e . . This is your first post. Edit or delete i
»<li id="search-2" class="widget-container widget_search">.. bod BEBE wp3 /wp-content fthe
v<li id="recent-posts-2" class="widget-container widget_recent_entries"> » Metrics
<h3 class="widget-title"=Recent Posts</h3> - Lomment | Edit
»<uls. B Properties
</li» b Event Listeners -
p<li id="recent-comments-2" class="widget-container widget_recent_comments">.</Lli>
p<li id="archives-2" class="widget-container widget_archive">_
p<li id="categories-2" class="widget-container widget_categories">.
p<li id="meta-2" class="widget-container widget_meta">..
<ful>
</div>
<!— #primary .widget-area —=>
=/div>
<!— #main —>»
»<div id="footer" role="contentinfo'">.</div>
<!-- #footer -—>
<fdivs
=!— #wrapper ——>
=/body>
</html=
E > Q html bodyhomebloglogged-in - di pper.hfeed \ divcontainer » div#content ~ #post-1 div p

Figure 4-4: The content area is positioned by div#container

800

i,y The Epic Test Blog | Just an \ 1R

& 3 C M % http://localhost:8888/wp3/ » O- F-

-
The Eplc Test Blog Just another WordPress site

—
T
BT
ey
ft;
K
e
e
4
\;
Al
[t
§

(Search The Epic Lorem Ipsum Post
Boated on Seotamber 2. 2010 by tdh
Archives
= September 2010 Lorem ipsum dolor sit amet, eleifend sodales sed urna fermentum. A mi. Et tempus
i massa convallis bibendum lectus dui. Feugiat sit donec at, mi nullam molestie, arcu lacus
= Site Admin lacinia placerat etiam, nunc quis donec ac semper vivamus donec, mollis ut donec tellus.
= Log out Mi amet, condimentum fringilla dolor nisl, nec molestie, phasellus orci, metus nisl

sollicitudin sed accumsan felis. Eget et viverra metus felis, libero viverra dui gravida.

Felis ridiculus sociis, odio per condimentum elementum in non. Proin aliquam aliquet
aenean felis, nec sapien cras pretium diam lacinia odio, arcu et cras erat quis aliquet,
egestas libero auctor porttitor pellentesque. Ac vehicula, enim non phasellus pede vitae,
eu wisi possimus posuere pulvinar sagittis sociosqu, nonummy feugiat, ultricies hendrerit
orci mi diam. Laoreet nonummy pede tempor suscipit. Vel vestibulum pellentesque

Figure 4-5: The side column is positioned by div#primary

3. Add the necessary styles. You're ready to add the necessary styles, so go back to style.css in your child theme. All you need to do is
change the floating on div#container to right, and div#primary to left to achieve what you want. You'll add the styling after the import
rule.

/*

Theme Name: Twenty Ten Left Sidebar

Theme URI: http://tdh.me/wordpress/

Description: A simple child theme for Twenty Ten that moves the side column to the left.

Author: Thord Daniel Hedengren

Author URI: http://tdh.me/

Template: twentyten

Version: 1.0

This here is just to show that you can add a comment
here as well. Fancy huh?

*/

/* Import the Twenty Ten stylesheet */

@import url(‘../twentyten/style.css’);

/* Move the content column to the right */

div#container { float:right; }

/* Move the side column to the left */

div#primary, div#secondary { float:left; }

4. Activate the child theme. After saving and uploading your child theme, it appears in the WordPress admin panel, under Appearance
settings in Themes. If you want a nice thumbnail image, you'll have to add a screenshot.png in your child theme’s folder, as well.

Activate, and voila! The right column is now on the left (as you can see in Figure 4-6), and it will stay there even when Twenty Ten, your parent
theme, is updated as all the changes you've made sit in a child theme.

806
\iiy The Epic Test Blog | Just an A\ 1R

&€ 5 C| M % http://localhost:8888/wp3/ » O- F-

-
The Ep'c Test Blog Just another WordPress site

ey —
(Lt
JJ- __J-H — -

FRESC '

~ .", L. - ~ oS <

3 el

(Search The Epic Lorem Ipsum Post
Posted on September 2, 2010 by tdh

Archives
= September 2010 Lorem ipsum dolor sit amet, eleifend sodales sed urna fermentum. A mi. Et tempus
i massa convallis bibendum lectus dui. Feugiat sit donec at, mi nullam molestie, arcu lacus
= Site Admin lacinia placerat etiam, nunc quis donec ac semper vivamus donec, mollis ut donec tellus.
= Log out Mi amet, condimentum fringilla dolor nisl, nec molestie, phasellus orci, metus nisl

sollicitudin sed accumsan felis. Eget et viverra metus felis, libero viverra dui gravida.

Felis ridiculus sociis, odio per condimentum elementum in non. Proin aliquam aliquet
aenean felis, nec sapien cras pretium diam lacinia odio, arcu et cras erat quis aliquet,
egestas libero auctor porttitor pellentesque. Ac vehicula, enim non phasellus pede vitae,
eu wisi possimus posuere pulvinar sagittis sociosqu, nonummy feugiat, ultricies hendrerit
orci mi diam. Laoreet nonummy pede tempor suscipit. Vel vestibulum pellentesque

Figure 4-6: Twenty Ten Left Sidebar really does have the sidebar to the left

The perfect Twenty Ten project

Since child themes work best when you don’t have to make dramatic alterations to the parent themes, you should consider what you want to
build and how that fits with Twenty Ten. Not all sites are ideal, so compare your goal with Twenty Ten and decide whether it is suitable or not.

A few things to think about include:

* Is the main layout similar?

* Is the content flow similar?

* Is this the ideal way to deliver the content?

« Can I fit all the ads, promotional messages, and similar blocks that | need?

* Do I need the extra features, such as custom headers and such, or is that something | need to remove?
* Will need to overwrite a lot of files in my child theme?

Any child theme should consist of as little code as possible, from the stylesheet to actual PHP and HTML in the template files. The less you
need to override in your child theme, the better. That's why it is sometimes a better idea to build your own parent theme, and then use child
themes on top of that.

Twenty Ten and Child Themes

Using Twenty Ten as the parent theme for child themes is a good idea for several reasons. First of all, the theme is pretty clean and sweet
design-wise, although you may disagree. However, the fact that it is so clean makes it easy to make minor changes to, and you get all those
features as a bonus. That means that minimal child theming lets you change the look and feel of the theme, while maintaining the custom header
image functionality, for example.

Second, Twenty Ten is the default theme in WordPress 3.0, which means that it is widespread. While it might not be the default theme forever,

you can expect a majority of users will have it in their themes folder. If you intend to release your child theme in the wild, and not just keep it for
yourself, then that's a good thing.

Third, as the default theme, a ton of eyes have reviewed it during its development. So it showcases WordPress functions in a good and modern
way. If that’s not enough for you, the mere number of comments in the code will help you learn theming. Among those things that actually matter
for child theming is the get template part () usage for fetching the loop, which I've talked about before.

These are the things that make Twenty Ten suitable to build child themes upon. You can hack it straight up if you'd like, fork it into a different
theme and be happy with that, but that would mean that you'd miss out on the automatic updates to the theme. Child themes are always the way
to go in these cases. So unless you're making drastic alterations, you should go with a child theme setup.

Example: Adding a Second Sidebar

You've been idle long enough; it's time to do something cool with Twenty Ten, like add an additional sidebar with its very own widget area of
course. You'll add it to the left column since a lot of people like tri-column designs. And you'll do it as a child theme, naturally.

1. Create the child theme. To create the child theme, which you can call Twenty Ten Tr, create a folder called twentyten-tri, dropitin

wp-content/themes, and add a style.css file with the following content:
/*
Theme Name: Twenty Ten Tri
Theme URI: http://tdh.me/wordpress/twentyten-tri/
Description: A child theme for Twenty Ten that adds an extra sidebar.
Author: Thord Daniel Hedengren
Author URI: http://tdh.me/
Template: twentyten
Version: 1.0

As made famous by the wonderful book
Smashing WordPress Themes: Making WordPress Beautiful

*/
/* Import the Twenty Ten stylesheet */
@import url(‘../twentyten/style.css’);

2. Add another widget area. The left sidebar needs a widget area. To add that, you need to create a functions.php for the child theme as
well. This one will load first, in addition to the parent theme’s functions.php file, so the widget area will just be added.

<?php
register sidebar(array(
‘name’ => (‘Left Widget Area’, ‘twentyten’),
‘id’ => ‘left-widget-area’,
‘description’ => (‘The left hand sidebar widget area’, ‘twentyten’),
‘before widget’ => ‘<1i id="%1$s” class="widget-container %2$s”>’,
‘after widget’ => ‘</1i>’,
‘before title’ => ‘<h3 class="widget-title”>’,
‘after title’ => ‘</h3>’,
))i
?>

The widget code comes from Twenty Ten'’s functions.php and the right widget area in particular, since you want to retain the same style to the
left. Name the widget area Left Widget Area (shown in the right column in Figure 4-7).

806

i,y Widgets < The Epic Test Blog x \@

Your site's WordPress Pages

The most recent comments

Fourth Footer Widget Area

€ > C M |5y http://localhost:8888/wp3 /wp-admin/widgets.php » O~ F~
/_\\ =
'@)) The Epic Test Blog search engines Biocked New Post v Howdy, tdh | Log Out
R Screen Options Help
@ B0 Widgets
s Available widgets Left Widget Area v
Drag widgets from here to a sidebar on the right to activate them. Drag widgets back here to f g :
E deactivate them and delete their settings. The left hand sidebar widget area
Archives Calendar
H_:l A monthly archive of your site's posts A calendar of your site's posts Primary Widget Area -
&
Categories Custom Menu
& A list or dropdown of categories Use this widget to add one of your custom Secondary Widget Ares "
menus as a widget.
& First Footer Widget Area v
Links Meta
8 !
‘N Your blogroll :;:isinfout. admin, feed and WordPress nd Footer Widget Area -
Pages Recent Comments Third Footer Widget Area v

Recent Posts

The most recent posts on your site

Search

A search form for your site

RSS

Entries from any RSS or Atom feed

Tag Cloud

Your most used tags in cloud format

Text

A

Arbitrary text or HTML v

Figure 4-7: The Left Widget Area

3. Create the left sidebar template file. You need something to show in the left-hand widget area. That's why you'll create a file called
sidebar-left.php for your child theme, containing everything you need to output the Left Widget Area. This is what's in it, based on the code
from Twenty Ten’s own sidebar.php to keep it in the same style.

<?php
/* The left hand sidebar, called with get sidebar(‘left’) in header.php */
>
<div id="leftsidebar” class="widget-area” role="complementary”>
<ul class="xo0x0”>
<?php 1if (! dynamic sidebar(‘left-widget-area’)) : ?>
<1li>
Hey buddy, you need to get some widget in here!
</1li>
<?php endif; // end left widget area 72>

</div><!-- #leftsidebar .widget-area -->

Why is it called sidebar-left.php, then? That’s so that you can call it with the get _sidebar () template tag, and just pass the parameter
‘left’ toit. You could also have called it sidebar-arthur.php and pass the parameter ‘arthur’, but that doesn’'t make as much sense, now
does it?

4. Add a new header.php. The easiest way to get the left column into every template is to copy header.php from Twenty Ten into your child
theme. Thenyou'lljustadd get sidebar (‘left’) after div#main and hence get it included before the content and right sidebar.

<?php

/ * %

* The Header for our theme.

Displays all of the <head> section and everything up till <div id="main”>

EE

* @package WordPress

* @subpackage Twenty Ten

* @since Twenty Ten 1.0

*/

?><!DOCTYPE html>

<html <?php language attributes(); ?>>

<head>
<meta charset="<?php bloginfo(‘charset’); 2>" />
<title><?php
/*
* Print the <title> tag based on what is being viewed.
*/

global S$page, S$paged;
wp title(‘|’, true, ‘right’);
// Add the blog name.
bloginfo(‘name’);
// Add the blog description for the home/front page.
$site description = get bloginfo(‘description’, ‘display’);
if ($site description && (is home() || is front page()))
echo “ | $site description”;
// Add a page number if necessary:
if ($paged >= 2 || Spage >= 2)
echo ' | ' . sprintf((‘Page %s’, ‘twentyten’), max($paged, S$page));
?></title>
<link rel="profile” href="http://gmpg.org/xftn/11" />
<link rel=”stylesheet” type="text/css” media="all” href="<?php bloginfo(‘stylesheet url’); 2> />
<link rel="pingback” href="<?php bloginfo(‘pingback url’); 2>" />
<?php
/* I add some JavaScript to pages with the comment form
* to support sites with threaded comments (when in use).
*/
if (is_singular() && get option(‘thread comments’))
wp enqueue script(‘comment-reply’);
/* Always have wp_ head() just before the closing </head>
* tag of your theme, or you will break many plugins, which
* generally use this hook to add elements to <head> such
* as styles, scripts, and meta tags.
*/
wp head() ;
>
</head>
<body <?php body class(); ?>>
<div id="wrapper” class="hfeed”>
<div id="header”>
<div id="masthead”>
<div id="branding” role="banner”>

<?php Sheading tag = (is home() || is front page()) 2 ‘hl’ : ‘div’; 2>
<<?php echo S$heading tag; ?> id="site-title”>

<a href="<?php echo home url(‘/’); ?>” title="<?php echo
esc_attr(get bloginfo(‘name’, ‘display’)); ?>” rel="home”><?php bloginfo(‘name’); ?>

</<?php echo S$heading tag; ?>>
<div id="site-description”><?php bloginfo(‘description’); ?></div>
<?php
// Check if this is a post or page, if it has a thumbnail, and if
it’s a big one
if (is_singular() &&
has post thumbnail ($post->ID) &&
(/* src, SSwidth, Sheight */ $image =
wp get attachment image src(get post thumbnail id($post->ID), ‘post-thumbnail’)) &&
$image[1] >= HEADER IMAGE WIDTH)
// Houston, I have a new header image!
echo get the post thumbnail ($post->ID, ‘post-thumbnail’);
else : ?>
<img src="<?php header image(); 2>” width="<?php echo
HEADER IMAGE WIDTH; ?>"” height="<?php echo HEADER IMAGE HEIGHT; P> alt="" />
<?php endif; ?>
</div><!-- #branding -->
<div id="access” role="navigation”>
<?php /* Allow screen readers / text browsers to skip the navigation menu and get
right to the good stuff */ 2>
<div class="skip-link screen-reader-text”><a href="#content” title="<?php

esc_attr e(‘Skip to content’, ‘twentyten’); ?>"><?php e(‘Skip to content’, ‘twentyten’); ?></div>
<?php /* Our navigation menu. If one isn’t filled out, wp nav _menu falls
back to wp page menu. The menu assiged to the primary position is the one used. If none is assigned,
the menu with the lowest ID is used. */ 2>
<?php wp nav_menu(array(‘container class’ => ‘menu-header’, ‘theme location’

=> ‘primary’)); ?>
</div><!-- #access -->
</div><!-- #masthead -->
</div><!-- #header -->

<div id="main”>
<?php get sidebar(‘left’); 2>

Now you get a simple output (from the default widget area content defined in sidebar-left.php). Figure 4-8 shows that the widget is not yet
where you intend it to be.

| assume that you've activated the child theme, so do that. | discuss this earlier in this chapter in our simple child theme example.

ano
/ ({y/ The Epic Test Blog | Just an 4 ch

&€ 3 C| M % http://localhost:8888/wp3/ bl O

-
The Ep'C Test Blog Just another WordPress site

e .:‘---_a
Hey buddy, you need to get some widget in here!
The Epic Lorem Ipsum Post (Search)
Posted on September 2, 2010 by tdh
Archives
Lorem ipsum dolor sit amet, eleifend sodales sed urna fermentum. A mi. Et tempus = September 2010
massa convallis bibendum lectus dui. Feugiat sit donec at, mi nullam molestie, arcu lacus Meta
lacinia placerat etiam, nunc quis donec ac semper vivamus donec, mollis ut donec tellus. « Site Admin
Mi amet, condimentum fringilla dolor nisl, nec molestie, phasellus orci, metus nisl = Log out
sollicitudin sed accumsan felis. Eget et viverra metus felis, libero viverra dui gravida.
Felis ridiculus sociis, odio per condimentum elementum in non. Proin aliquam aliquet
aenean felis, nec sapien cras pretium diam lacinia odio, arcu et cras erat quis aliquet,
egestas libero auctor porttitor pellentesque. Ac vehicula, enim non phasellus pede vitae, a

eu wisi possimus posuere pulvinar sagittis sociosqu, nonummy feugiat, ultricies hendrerit

Figure 4-8: The sidebar ends up on top, not looking too good at the moment

5. Style it with style. Right, so now the sidebar shows up, and it will look and behave just like the right-hand sidebar does. You pass itin
sidebar-left.php. However, you need it to use the correct width, and you want it to float left — now it just sits on top of everything looking sad.
That's why you use #1eftsidebar for the div. This is in style.css (in the child theme) and will take care of the first problem.

#leftsidebar {
float: left;
width: 220px;
}
Now you've got your sidebar floating to the left of the content (Figure 4-9 shows that the widget is in the left column), but the content in turn is
pushing down the right sidebar.

Next you need to fixthe div#container elementsince that has a 100% width and aligns with the right sidebar using negative margin. That
won’t work on the left column, so you have to set the width (in pixels) for div#container so thatit'll work with the left side.

#container {

width: 720px;
}

The container is set to 720 pixels width. Full width is 940 pixels, removing 220 pixels for the left sidebar container gives you 720 pixels. You
don't need to worry about the right sidebar since that is still managed with a negative margin to the right in the original Twenty Ten stylesheet
(Figure 4-10 shows your intended result).

8eno

/ (&JThe Epic Test Blog | Just an W

€ > C M % http://localhost:8888/wp3/ > O~ F-

The Epic Test Blog Just another WordPress site

Hey buddy, you need to get some The Epic
Posted on Septe

widget in here!

Lorem Ipsum Post

Lorem ipsum dolor sit amet, eleifend sodales sed urna fermentum. A mi. Et tempus
massa convallis bibendum lectus dui. Feugiat sit donec at, mi nullam molestie, arcu lacus
lacinia placerat etiam, nunc quis donec ac semper vivamus donec, mollis ut donec tellus.
Mi amet, condimentum fringilla dolor nisl, nec molestie, phasellus orci, metus nisl
sollicitudin sed accumsan felis. Eget et viverra metus felis, libero viverra dui gravida.
Felis ridiculus sociis, odio per condimentum elementum in non. Proin aliquam aliquet
aenean felis, nec sapien cras pretium diam lacinia odio, arcu et cras erat quis aliquet,
egestas libero auctor porttitor pellentesque. Ac vehicula, enim non phasellus pede vitae,

eu wisi possimus posuere pulvinar sagittis sociosqu, nonummy feugiat, ultricies hendrerit
orci mi diam. Laoreet nonummy pede tempor suscipit. Vel vestibulum pellentesque

Figure 4-9: The content pushes down the right sidebar

eno :
/' &y The Epic Test Blog | Just ar i\ &h

€« 5> C f v http://localhost:8888/wp3/ » O~ F-

The Epic Test Blog Just another WordPress site

B i e The Epic Lorem Ipsum Post (Search)
widget in here! S B S8 B
- Archives

Lorem ipsum dolor sit amet, eleifend sodales sed urna = September 2010

fermentum. A mi. Et tempus massa convallis bibendum S

lectus dui. Feugiat sit donec at, mi nullam molestie, arcu v Site Adiitn

lacus lacinia placerat etiam, nunc quis donec ac semper = Logout

vivamus donec, mollis ut donec tellus. Mi amet,

condimentum fringilla dolor nisl, nec molestie, phasellus

orci, metus nisl sollicitudin sed accumsan felis. Eget et

viverra metus felis, libero viverra dui gravida. Felis

ridiculus sociis, odio per condimentum elementum in non. .

Proin aliquam aliquet aenean felis, nec sapien cras

Figure 4-10: Both sidebars aligned with the content

There you go, the sidebars are aligned! Take a look at the full style.css from your child theme.
/*
Theme Name: Twenty Ten Tri
Theme URI: http://tdh.me/wordpress/twentyten-tri/
Description: A child theme for Twenty Ten that adds an extra sidebar.
Author: Thord Daniel Hedengren
Author URI: http://tdh.me/
Template: twentyten
Version: 1.0

As made famous by the wonderful book
Smashing WordPress Themes: Making WordPress Beautiful
*/
/* Import the Twenty Ten stylesheet */
@import url(‘../twentyten/style.css’);
/* Left Widget Area */
#leftsidebar {
float: left;
width: 220px;
}
/* Main content container fix */
#container {
width: 720px; /* max width is 940px, subtract for #leftsidebar */
}
All that's left to do is to drop some widgets in there, but you already know how to do that, right?

Get the complete child theme from http./tdh.me/mordpress/wentyten-tri.

Using Child Themes in Multiple Network Sites

Since any template file within a child theme takes precedence over its namesake in the parent theme, you can get a pretty nifty setup. This is
especially true if you want to use the same parent theme across a network of sites.

Child themes are especially great when you have multiple sites in a network that share a common code base. With a parent theme in the
middle, each site will have its own child theme and hence its own distinctive style. But, whenever you want to roll out new features on your sites,
you can just add them to the parent theme. The new features then instantly deploy in all your other sites (for example, on your network).

This means that when you have a network of sites, build a parent theme that fits your needs in terms of ad spots, content, and so on. Then you
just use child themes to make each site stand on its own. The sooner you convert to it, the better for you. Then you don’t have to update several
themes, just one, when it comes to code and basic features. | bet traditional blog networks would’ve loved this feature back in the day!

Wrapping It Up

Considering a child theme setup for your WordPress sites, especially if you're looking at a whole lot of them, is not only prudent, it is also a must
if you want to streamline your work. And, as if that isn't enough, child themes are the preferred way to alter themes since hacking them will have
your changes overwritten in updates.

In other words, you should learn to work with child themes and use them when appropriate. Now you know how, so there’s really nothing
stopping you.

So with the child theme knowledge close at hand, how do you choose the correct theme to work with, if you don’t want to build your own from
scratch? Let's find out. Turn the page to the next chapter.

Chapter 5: Choosing a Theme

It is always a good idea to play around with other people’s themes. Whether you're seeking to find a perfect theme to build upon, or just to learn
more about WordPress software, is really beside the point. By trying new themes, you gain a greater understanding of how themes work and
how you can address various issues.

This chapter is all about choosing new themes, what you should think about, and what you should definitely avoid.

Picking the Right Theme

Finding themes is easy enough: tons of sites offer them for free or for a fee, and there’s the wordpress. org themes directory as well. The
problem is finding the right theme, that perfect one that you are looking for. This is actually a serious matter for a lot of WordPress users out
there, which is why blog posts picking nice-looking themes are both popular and common. Chances are you still haven’t found the perfect theme
(see one interesting example in Figure 5-1). After all, design is very much a matter of personal preference, and then there’s your vision for the
site that you need the theme for to consider as well.

AutoFocus+ Demo Home About Archives Level1 Music Contact

accumsan feuglat tellus. Nam

Figure 5-1: Autofocus+ is actually a paid Thematic child theme, buy it from http: //fthrwght.com/autofocus

The fact that you're reading this book tells me that you're not afraid to get your hands dirty (with code at least). This means that you're at an
advantage compared to most WordPress users. Should you not find the perfect theme, you can always create your own, or modify one that has
the basics right, but just needs a little work to fit your needs.

What I find to be a nice theme may not be your flavor at all (Figure 5-2 is an example of one popular theme), which means that it is really hard to
give any actual advice on the subject. So that’s why | made a list. It is not complete, and your mileage will vary, but it does contain some things
to think about. When you're selecting a theme that you aim to release to the community, make sure that you can answer these questions, and
more.

FEATURED PREVIEWS REVIEWS

ARRAS THEME LIVE DEMO

XBOX 360 Wii Nintendo DS PSP

Theme Switch

« | Arras .

: The ladies of Super Street Fighter
IV get new outfits
.!_;,!,"_

Little League World Series Baseball 2010 hitting
must be seel some kind o ningful return on their Little League World Series Baseball ;I(:lll; tf;?nu: :sr{;':lgss;”es T

Jo Comments

Final Fantasy Heroes of Light
battling to DS

PM | No Co

FEATURED STORIES

Pokemon multiplying on Wii, DS
8 May 2010 3 PM | No Co ents

K B

Calendar

The ladies of Super Street Little League World Series Final Fantasy Heroes of
Fighter IV get new outfits Baseball 2010 hitting PS3, Light battling to DS November 2010
360

M T w T E 5 5
3

4 5

10 11 12

17 18 19

Figure 5-2: The Arras theme is a popular choice, available for free at http://arrastheme.com

Design issues

* Does the theme look good? Get a theme that you like, or at least one that appeals to your target audience, if that is important to you.
Your personal site might not suffer from using a quirky design that people either love or hate, but it might be a completely different matter if
you intend to promote a product or a cause.

 Does the theme support custom headers? If not, can you add it easily if you want it? While it is easy enough to add the custom header
functionality, it just won't fit in every theme. If you feel you need that functionality and it isn’t supported out of the box, figure out how and where
yoU'll add it visually before committing to the theme.

+ Does the theme support custom backgrounds? If not, can you add them easily if you want, and can you do it in such a fashion that it
doesn't look silly when used? Not all themes look good with a custom background. Extremely visual themes can suffer since the various
elements might be tightly knit together to deliver a certain look and feel. If you want to be able to use custom backgrounds, make sure that it
will be aesthetically appealing when you do.

« Is the theme easy to modify, in terms of logos, colors, type, and so on? Luckily, most theme authors know by now that they shouldn’t
hardcode the CSS styles into the various elements in the template files, but rather should rely on CSS classes and ID’s which you can easily
get to through style.css (or similar), so this is more an issue of having a decent layout and nomenclature. Can you, for example, change all
link colors easily or do you need to make the same color change in a lot of places? A decent CSS layout will do. Another aspect here are
theme options, where you may be able to make some if not all modifications in terms of colors and logos.

Layout issues

« Is the main layout what you’re looking for? Is the layout following a column grid that you can work with? Is there enough space for your
content? If not, find another one to save time.

+ Does the content flow the way you’d like? Pay attention to how posts can be portrayed (such as, is there support for attachments).
Does the archive treat the content the way you want? Luckily, it is pretty easy to alter these things, but this could be a factor, especially if your
content is all images and you need to be able to display them properly.

« Is the theme localized? Can you add your own translations to it without hacking the template files? If you need to translate the theme of
your choice, then you should go for one that is localized from the start. This will narrow your scope quite a lot, unfortunately, but perhaps you
can help push the theme designer into adding localization support to the theme in question, or help him do it yourself? If you need to localize
the theme, you should do it with language files and not by translating every text snippet in the template files. For more information on
localization, see Chapter 6.

* Does the theme have all the widget areas that you like? If not, is there room to add them without too much of a hassle? The same

goes for ad spots really, if you know you need to fit in particular ad sizes, then make sure there is room to add them. Widgets are a nice way
of doing that.

Development issues

» Does the theme have all the necessary template files? If not, can you add the missing files should you want to use it anyway?

« Is the theme easy to build child themes upon? Can you change the look and feel easily with a child theme? It helps if the theme uses
get template part () and the loop templates. This is obviously only an issue if you intend to use the theme as a parent theme.

« What about menu support? Are there menu areas, and if not, do menus display in widget areas where you might want to add them? This
is fairly easy to add, luckily, both menu areas and the necessary styling of the Menu widget should you resort to that.

« Is the code in the theme’s files well-structured? Can you find your way in it easily? If not, then alterations and changes will take more
time, and chances are the theme’s quality is lacking.

 Does your site load quickly with the theme enabled? Get a lightweight theme if you can, both users and search engines like speed.

 Speaking of which, is the theme well-designed in terms of search engine optimization? SEO is a huge topic, but you should make
sure that the fundamentals are in, such as post and Page titles in the title tag, proper meta descriptions, and such. Luckily WordPress takes
care of most of this, and there are plugins that can help as well.

 Does the theme validate? Some claim that search engines like that too, and it's the right thing to do. It may also help make sure that
future Web browsers will read the markup correctly. Check itathttp://validator.w3.org.

» Does the theme rely on any outside scripts or services? This could be JavaScripts hosted with Google, font replacement scripts, as
well as inclusion from sites like Facebook or services like DISQUS. Using outside scripts and services increase load times, and not all of
them degrade nicely when the service you're relying on is experiencing problems. You need to be wary with too many outside scripts and
services, and should definitely be careful not to rely too much on them.

+ Does the theme work in all major Web browsers? It should, fixing that is often tedious work. What Web browsers you need to support
is entirely up to you. Consult your demographic information to see what your needs are.

« What about mobile devices, is there any built-in support for that? If not, that's OK. You can use plugins that can help, but it sure is a
bonus.

« Is the theme ready for common plugins, such as Subscribe to Comments? You can add support for these things easily enough
yourself, but it can be a bonus if there’s built-in stylings and such from the start.

« Is the theme licensed under GPL? Does that matter to you? This is a complicated issue, and if you're doing work for a company then
consult the legal department to avoid any problems. All themes found on wordpress.org are licensed under a GPL-compliant license.

» Does the theme author support the theme? If you intend to use the theme as a parent theme, or as is, then it is obviously a good thing if
the theme author is active in support forums. It is also good if the theme is in active development since that probably means that it will be
updated when WordPress gets new features.

Theme Frameworks

Any theme can serve as your theme framework. Some theme authors push this, making their themes sound more like frameworks than others.
They might be, depending on how well they fit your needs. Just because a theme isn’t labeled as a theme framework doesn’t mean it won't
serve as one. There is no “framework template tag” or anything like that — themes are themes.

Some themes are more suitable as Web site frameworks than others. Always pick the framework most suited to your site’s needs. For
example, a theme created to display photographs probably won't have the text support and features you want to run your newspaper site. In this
case, you're better off picking something more aligned to text.

You'll note that | use the term framework loosely. The purpose of a framework is to make development easier, which saves time and possibly
money (and headaches). Any theme that saves me time developing the site I'm after that can serve as a robust starting point, and perhaps even
as a parent theme for my projects, is a framework. It is a matter of what you need, nothing else. One popular framework is The Hybrid theme (at
http://themehybrid.com). Check out these two Web sites that use The Hybrid theme as a framework: Lero9 (at http://leroc9.co.nz)
and Daisy Olsen (at http://daisyolsen.com).

What Is A Good Framework, Then?

Despite the arguments over what constitutes a framework, most of the time you'll find a lot of common denominators. While the needs of your
sites should determine your choice of a framework theme, you have technical things to consider as well. Some themes might be so niched to
their primary functions and vision that they lack some features that you might need, which makes them unsuitable as frameworks. Others are so
feature-filled that they become bulky and hard to manage, which might be good at some point, but certainly not in all situations.

You want your theme framework to be lightweight, good at what it does, but not necessarily do everything. That adds overhead, and you don’t
want that. This means that themes filled with extra functionality that calls the database a lot should be avoided, since every call makes the site a
little bit slower and unless you need it, it shouldn’'t be there. This is especially true if you intend to use the theme as a parent theme (Figure 5-3
shows a good parent theme example), and not just build uponiit.

Carrington

The CMS Theme Platiorm for WordPress

ABOUT CHANGELOG DEVELOPERS DOWNLOADS & THEMES SHOWCASE YOUR SITE THANKS! Register Login

Categories: Announcements Dewvelopment General InThe Wild Showcase Themes { search

XMPP Standards Foundation

The XMPP Standards Foundation is an independent, nonprofit standards development

organization whose primary mission is to define open protocols for presence, instant

messaging, and real-time communication and collaboration on top of the IETF's Extensible About Can‘lngton
Messaging and Presence Protocol (XMPP)

SUBSCRIBE

Carrington is a theme platform for WordPress from Crowd
Favorite. It includes the Carrington Core, a reactive
templating engine that makes it easy to create different visual
styles for different site areas and content and Carrington

The XSF site is the central repository of information on the XMPP protocol.

osted in Showcase

B Build, an advanced drag and drop page layout system that
ly showcaseuser — September 15, 2010 (- Comments Off enables full editorial control for complex pages. more —
Updates to Blog, Text and Mobile Themes Resouisss Recent Posts

XMPP Standards Foundation
Updates to Blog, Text and

> Community Suppon

We submitted these to WordPress.org a week ago, you can track the progress here. In the
> Crowd Favorite

meantime, you can download the updates from the Google Code project page

> Download Mobile Themes
osted in Announcements, Carrington Blog, Carrington Mobile, Carrington Text Professionsl Suppart > {iAmng B0 IAM 14
> SVN (Google Code) = Carrington Core 3.0.1

By Alex King — September 1, 2010 () No comments > My Swim Coach
» Carrington Core 3.0
Categories > INK Design
. A + Child Theme Support for
Carrington JAM 1.4 Announcements ikl
Carrington Blog
> Carringlon JAM » WordPress HelpCenter

Carringmn JAM (Just Add Markup), our theme skeleton for use in Cl'ﬁa'[ing your own theme 5
based on the Carrington framework, has been updated to version 1.4. Carrington JAM version Carrington Mobile

1.4 is now available. This includes Carrington Core 3.0.1 and updates to the comment > Carrington Text

functions to utilize the latest built-in WordPress core features. » Development

Maving Resources

Recent Comments

» General
Please download from the themes page and be sure to check out the recently updated and » In The Wild » Devin Reams on The Post
Showcase Context

ded developer documentation

> dreams on Moving

Figure 5-3: Carrington is a popular suite of themes: Carrington Blog, at http: //carringtontheme.com

Source: wwy.carringtontheme.com

On the other hand, you want your theme framework to be complete. That means that it should handle everything that is default in WordPress,
from posts and Pages, to attachments and author archives. All those features should be presented in a decent manner, making it easy for you
to work with them. You might not need a particular template on one project, but it may be necessary on the next. Since theme frameworks are
meant to ease the development of sites, it is important that all the default stuff is there. That way you can focus on creating the features that are
unique to your new site.

A decent theme framework also needs to manage all the CSS classes used by default in WordPress, as well as possibly your primary set of
plugins. The more of that you can include in your framework, the better. At the very least, you want support for image placement, captions, and
similar items (Figure 5-4 shows an effective framework). All themes following the themes checklist earlier in this chapter should comply.
Whether they look good or not is a completely different matter.

i rd Fr. rk Test Dri

a free wordpress framework

Brief About the Whiteboard Framework
Whiteboard Features

Test Content

Bold Perspective

Bold Perspective Labs

This test site is built using an un-modified version of the Whiteboard framework for Wordpress.

L I I

We hope to design themes for the Whiteboard framework using only CSS without modifying the PHP files at all.

Don’t Work too Hard

“If you build sites using WordPress & don’t use the Whiteboard framework as a start, you're working too hard.” -PUBLIC SCHOOL,
2publicschool

Written on August 20, 2010 at 10:39 am, by administrator
No Comments

Categories: Category III, Child Category, Framework, Testimonials, Wordpress
Tags: Framework, Tag IV, Whiteboard

Short URLs

All posts have an automatically generated short URL by is.gd.

Written on August 20, 2010 at 4:49 am, by administrator

No Comments

Categories: Child Category, Framework, Whiteboard Features, Wordpress
Tags: Framework, Tag ITl, Wordpress

Small Post

Here's a small Post. Ain't WordPress great?

‘Written on August 20, 2010 at 4:21 am, by administrator a

Figure 5-4: Whiteboard is a truly stripped theme framework, get it from http: //whiteboardframework.com

Create your own Framework

One way to make sure that you get the features and setup that you need from your theme framework is to create it yourself. This is a particularly
good idea if you intend to embrace the child theme concept fully, and need to publish a series of sites that share functionality. That way, you can
roll out new sites faster by just creating child themes to your theme framework.

Commercial themes

Not all WordPress themes are available for free; some will cost money. While you could debate if this is something good or bad for the
WordPress community and what it means for the GPL license, the fact is that you can find lots of high quality themes out there for a small
amount of money. These themes are either sold as they are, or as part of what's being offered to members of a themes club or such. Check out
Figure 5-5 if you are looking for a newspaper-style theme.

The commercial themes often come with support from the theme developers, which obviously can come in handy. That also means that the
themes will be updated with new versions of WordPress, not something you can count on with a free theme that someone created in their free
time. Sometimes you get what you pay for, or rather, you'll get more if you pay since theme licenses usually won’t set you back very much.

* Purchase this theme

. Stay Connected / Wednesday, November 03, 2010

-

WORDPRESS
NEWSPAPER

Vladimir Putin

Theme:

Advanced Newspaper -

Select a Style

Barack OBAMA

HOME WORLDNEWS BUSINESS

ABOUTUS SAMPLEPAGE PAGETEMPLATES ARCHIVES

Turkish PM optimistic about Nabucco pipeline »

Nunc posuere, lacus a suscipit posuere, tellus magna fringilla diam,...

FINANCE

The Worst Fund Launches of the Past
Deca

»

| L g “ Duis vel dui nibh, quis elementum erat. Ut adipiscing suscipit lacus, sed
/\; "‘ tempor odio semper id. Cras eu diam risus. Integer ac lorem enim.
4 { Aenean commodo orci purus, in convallis...

Dec 27 2009 f No Comment / Read More =

e Google sha?ens aim on mobile marketin:
!E ¢ “H'LY__ with AdMob » =

Figure 5-5: Advanced Newspaper is a newspaper theme, available from http:

FINANCE TRAVEL SPORTS

TRAVEL

Old Istanbul on the fringes of the
Grand Bazaar »

r - Suspendisse ut metus arcu, eget
lobortis lectus. Aliquam vel ante libero,
et adipiscing sapien. Nullam tristique
risus vitae nunc sodales..

Dec 272009 / No Comment / Read More =

‘Fairy chimneys’ of Cappadocia:
St?gnyge and b)efgutiful }}Jpa

Suspendisse ut metus arcu, eget
lobortis lectus. Aliquam vel ante libero,
et adipiscing sapien. Nullam tristique
risus vitae nunc sodales...

Dec 272009 / No Comment / Read More »

Ephesus: Gladiators’ graveyard
discovered »
Suspendisse ut metus arcu, eget
, lobortis lectus. Aliquam vel ante libero,
o ot adipiscing sapien. Nullam tristique
— = risus vitae nunc sodales...

Dec 272009 / NoComment / Read More =
Secret heavens in Spain: lost in

translation »
- Suspendisse ut metus arcu, eget

lobortis lectus. Aliquam vel ante libero,
et adipiscing sapien. Nullam tristique

gabfirethemes.com

MEDIA ENTERTAINMENT TECHNOLOGY

Economist Conferences

What's
init
for
Asia?

Find out

at the

May 10th 2007
Hong Kong

However, you should remember that while buying a commercial theme may make your site stand out a bit more than when you're rolling the

default WordPress theme, others can buy the same theme (Figure 5-6 shows one such popular commercial theme). If you want to have a truly
unique theme, you'll need to design and develop it yourself, or commission it from a designer. The price for unique themes depends on who you
want to hire; up and coming designers might settle for a few hundred dollars, while the professionals will set you back thousands of dollars. It all
depends on what you want and what your needs are for your custom theme.

| see absolutely nothing wrong with going with a commercial theme, whether it is a license from a themes club, or a privately commissioned,
unique site. The former is especially useful if you find a theme you like and then want to tweak it to your needs. You'll have to do some work
yourself to get it to look and feel the way you like, while a commissioned theme will be tailored to your needs from the start.

If nothing else, a commercial theme is something to consider. But given the fact that you're reading this book, chances are you may want to
build a theme yourself. If that is the case and you want to take a shortcut towards launching a WordPress-powered site, finding a commercial
theme close to what you want to achieve and building upon it like a framework, with child themes, may be a good place to start.

Mimbo Pro 2 WordPress theme Gettheme now! More information » Change Skin Default (Blue) B

Mimbo'ﬁo Demo

Home Health ~ Music ~ Politics ~ Tech Travel

Cras gravida diam sit amet

rhoncus ornare =)

N ber 18 - Health

Quisque facilisls erat a dul. Nam malesuada omare dolor. Cras
gravida, diam sit amet rhoncus omare, erat elit consectetuer erat, id
egestas pede nibh eget odio. Proin tincidunt, velit vel porta
elementum, magna diam molestie saplen, non aliquet massa pede
eu diam. Aliquam |aculls. Fusce et ipsum et nulla tristique facilisis.

Donec eget sem sit[...] Should you go the extra mile at the gym?

Full Story»

South Korean president faces fight Philharmonic concert in North Bosnian Serbs try fo storm U.S. Raul Castro gives signals that Cuba
over cabinet picks Korea represents thaw in refations Consulate during Kosovo protest will change

Disease and lliness» Archives

Bird flu kills 23-year-old woman in northern Vietnam (0}) o
Aliquam vitae massa. In ultrices. Curabitur eu ante. sk
\’\“\i-‘. k) ‘ Morbi fermentum, leo nec lacinia pulvinar, leo felis February 2008
B aliquam velit, id volutpat nunc lorem non nisi. Morbi at January 2008
PRO THEME FI EMENTAI enim nec turpis pellentesque pretium.

Figure 5-6: Mimbo Pro is a popular choice, available from http: //prothemedesign.com

The Official Themes Directory

The official Free Themes Directory for WordPress themes is located on http: //wordpress.org/extend/themes. All themes found here
(see Figure 5-7) have a GPL-compatible license and can be auto-updated from within WordPress. Users can rate them, and you'll find all kinds
of necessary information about the theme. All themes from the wordpress.org Free Themes Directory are free to download, of course.

Themes on this site comply with the WordPress standards (at the time of submission). You'll be notified from within the WordPress admin panel
when a new version of your theme is available from the wordpress. org directory.

Another nice thing about the wordpress.org themes directory is that it resides in every WordPress install out there. Assuming your Web host
supports it (which they should; complain otherwise) you can install brand new themes from within the Appearance section of the WordPress
admin panel. Just click Add New and browse the wordpress.org themes directory. Pretty sweet.

Go

@ WORDPRESS.ORG

Home Showcase Extend About Docs Blog Forums Hosting

Free Themes Directory 1ag 0 |

Looking for the awesome WordPress themes? Here's the place to find them! Most Popular »
fugins Welcome to the Free WordPress Themes directory.
Atahualpa Downloaded 8,421 times

Themes i)
e o Search below or check out our new filter and tag interface. = Mystique Downloaded 7,189 times
i : « Thematic Downloaded 6,841 times
= More Info ventyTen Downloaded 6,389 times
= Contact Us 1v281 THEMES, 22,791,301 DOWNLOADS, AND COUNTING « Pixel Downloaded 6.180 times
Search Themes « Constructor Downloaded 6,143 times
Ideas « Magazine Basic Downloaded 5,991
Kvetch! F d Th .
eature emes « Motion Downloaded 5,892 times
= Arras Downloaded 5,703 times
WORDPRESS a% Constructor = Graphene Downloaded 4,996 times
Wordpress Constructor Theme, it's many-in- Download « zBench Downloaded 4,965 times
=== « LightWord Downloaded 4,824 tim
———— one theme (six layouts, configured colors, fonts and i o ic ez
. = Platform Downloaded 4,447 times
slideshow, widget ready). Build your own theme on settings .
) » ChocoTheme Downloaded 3,926 times
page. For WordPress version 3.0+ = Piano Black Downloaded 3,744 times
P E—— | zBench Newest Themes »
It is a simply WordPress theme without any Download
plugins needed (support plugin WP-PageNavi, WP Page + Blue Taste Added October 31
Numbers, WP-PostViews, wp-utf8-excerpt, Related Posts of » Happy Halloween Added October 31

= Codium Extend Added October 31
= Platform Added October 29

Blue and White Added October 24
= Prototype Added October 24

= Clear Style Added October 22

P2 = aniMass Added October 20

Simple Tags, WP-RecentComments), little images, custom-

menu, widgets, threaded-comments, Valid C553 & HTML.

For WordPress version 3.0+

« Fazio Added October 19 a
= my depressive Added October 19 ¥

n A group blog theme for short update Download

Figure 5-7: The wordpress.org themes directory, found at http: //wordpress.org/extend/themes

This all sounds good of course, but there are some flaws. The most obvious one is that the theme author may have his own page for the theme,
where he offers the theme files. This means that unless the theme author remembers to update the theme on wordpress.org, youwon't be
notified of the new version, nor will you be able to auto-update from within your WordPress admin panel. Granted, most theme authors keep
their themes up to date on wordpress. org, but you might want to keep in mind that this is a manual thing and that means that mistakes can
happen.

The issue of what versions of WordPress the theme has been tested on is also a concern. Often the themes’ information says that it has been
tested up to a specific version, which may very well be several steps older than the one you're running. This doesn’'t mean that the theme
doesn’t work with the most recent version of WordPress; it just says that it hasn’t been tested with it. This is something the theme author
manages from within his theme files. Unless he or she has a reason to update the theme, this information won’t be updated. But, if the theme
hasn’'t been tested with your version of WordPress, give it a go anyway — it might work!

Finally, a few words about commercial themes on wordpress. org, or the lack of them rather. There is a link page to some themes

marketplaces (http://wordpress.org/extend/themes/commercial), but that's about it. If you want to buy commercial themes you'll have

to do that elsewhere. Figure 5-8 shows the commercial themes listing from wordpress.org.

Commercially Supported GPL Themes

While our directory is full of fantastic themes, sometimes people want to use something
that they know has support behind it, and don't mind paying for that. Contrary to

= Commercial popular belief, GPL doesn't say that everything must be zero-cost, just that when you
receive the software or theme that it not restrict your freedoms in how you use it.

= Contact Us

i With that in mind, here are a collection of folks who provide GPL themes with extra paid

eds
services available around them. Some of them you may pay for access, some of them are

Kvetch! . .

membership sites, some may give you the theme for zero-cost and just charge for

support. What they all have in common is people behind them who support open source,

WordPress, and its GPL license,

PriMo Themes Photocrati

Cour Latwn Wondfrwand Thees & Phaging

1}\&? ShowiDs
N
O L §

Three new themes per month. images that live
Cross-browser compatible with bold imagination
Amazing designs! painted with the light

Spectacu.la UP Themes

Figure 5-8: Commercial GPL-compliant themes promoted, but not sold, on wordpress.org

Things to be Wary About

Thousands of WordPress themes are available online, which is a good thing. WordPress is a very popular and widespread publishing platform
and that alone means that tons of themes, and plugins for that matters, are created and sometimes released. Most are free, but some will cost
you money. This is a good thing, but there are things to be wary about.

The most important thing to watch out for are themes containing malicious links. The theme author might not be as nice as you'd expect from
someone who is kind enough to release his or her theme for free online. Sneaky links to malicious Web sites, or just plain old text links to play
search engines like Google, can suddenly appear on your site because the theme you downloaded and activated have them in strategic places.
Even worse, there might be malicious code within the theme files. Themes downloaded from the themes directory on wordpress. org should
be free of this, but you can’t be too careful, of course.

The following questions might help you choose the right theme, or at least avoid going with the wrong one.
« Is it full of ugly hacks and perhaps deprecated functionality, or does it appear to be coded in a good and modern way? Using template tags

and standards of recent versions of WordPress will make sure that the theme will work in the future as well.

* Is it backwards compatible, or is it created for a particular version of WordPress only? While you should always endeavor to run the latest
version of WordPress, sometimes it may not be possible.

* Is the theme hosted on wordpress. org so that you can get automatic updates, or does the theme author supply them on his site? How will
you know when the theme is updated? Is there a mailing list? This is important if you intend to build child themes on top of the theme. If you
intend to use the theme as a base and modify it directly, then this point obviously becomes moot.

* Is there support, paid or pro bono, available for the theme should you need it?

Consider these things before going with a particular theme that you've found online and you'll make things easier on yourself and your site in the
future.

Obviously none of these things matter if you decide to just build upon the theme you’'ve downloaded. Then you'll be on your own anyway, and
paid support or auto-updates from wordpress.org aren’'t interesting to you.

Wrapping It Up

Finding the perfect theme is difficult. Whether you're looking for something to build upon, either with child themes or as a basis for your own

theme, or you actually want something that you're content with as itis, you'll find that the vast numbers of themes make it hard to find the perfect
one. Infact, I'd wager you won'’t find the perfect theme on wordpress.org or anywhere else online, since your needs and your preference most
likely differs from everybody else’s. Then again, you might get close enough!

Utilizing the number of themes out there is both a great way to get started with theming and a wonderful course when you're looking to learn
something new. If you know you're after a particular feature, find a theme that does it. Analyze how it is done by looking through the template
files to get inspiration for how to add it to your theme.

But enough of that for now. It's time to start building your own themes.

Part Il

Chapter 6: Planning the Theme
Chapter 7: A Semi-Static Theme
Chapter 8: A Media Theme

Chapter 9: A Magazine Theme

: Building Your Own Theme

Chapter 6: Planning the Theme

Hopefully you'll build plenty of themes over the coming weeks, months, and years. This chapter is all about that: what to consider before you
begin, site goals that can make it easier to plan for the long run, and checklists for stuff you just can’t forget about, such as required template
files and basics for good framework design. Whether you're looking to release your theme for anyone to download, or just want to build a cool
site for yourself, your clients, or other projects, these are things to consider.

This chapter starts with a look at what it takes to build a useful theme. And then, when you're done with that, you get into more niched themes
(that is, themes that focus on static content, images, or a magazine-inspired design). Good times ahead!

Plan Before You Build

Before you create a brand new theme from scratch, make things as easy as possible for yourself. Establish a plan before you get carried away
building your theme files and designing a layout. There are many ways to plan a theme, but I tend to go about it in this way.

The site concept stage

At the concept stage, | want to answer the following questions:

» What is the primary goal for this theme?

* Do I need to build it up for later use, or can | just get it out there in the minimum amount of time?

* Do Iwant to release this theme to the general public at some point?

* Do I need outside help to create this theme?
The second and third questions are all about how | should tackle the code when it comes to that. If speed is of the essence, | don’'t want to worry
about making the theme easy to build other sites on (at least not at this stage). Yet, if | do plan to use the theme as a parent theme or even a

framework in the future, | might want to add features that make it easier to work with. Features such as action hooks or extra widget areas
require extra planning.

The site design

Next, | start thinking about the design, and more specifically the wireframe of my design. How you go about creating a design is unique to each
individual. Some people build mockups in Photoshop, while others prefer to draw them on paper. | carry a Moleskine notebook with me (as you
see in Figure 6-1) to sketch design ideas (and other ideas as well, for that matter). | then take them to Photoshop for a more accurate mock-up,
or even go straight to creating the visual site elements, such as prominent graphics.

However you start, you need to figure out how you want your theme to look, and that means answering these questions:

» What general feeling do | want my theme to evoke: dark and heavy, light and bright, or maybe extremely experimental and abstract?
* Do | want visual flair and effects? If | do, how do | want these to look?

* Are there any ad spots, or other elements that | need to make room for?

» How will | present the content? Is it your typical list of posts or do | want large images to lead further into the site?

The last question is a big one, and if this was an in-depth book on how to actually design Web sites, it would be split up into a bunch of
chapters. From a WordPress point of view, you may want to consider how you plan to code the content presentation you've opted for. You don’t
yet need the solution, you just want to know that you're capable of doing it. In that sense, start figuring out how to code your theme and set up
your WordPress site in this design stage. Don't let it hamper you too much though: that’s not the primary goal for designing mockups and
wireframes.

Figure 6-1: These scribbles can end up as many pretty Web sites in a browser near you

The site mechanics

Finally, decide on the site mechanics: what categories and Pages you want, how you'll use and display posts, and things like that. It matters
because you might want to create Page templates and various archive views to make the site behave the way you want. So figure out how to
achieve the look and feel you decided upon. The following questions can help you work through this stage:

* How do | plan to use the front page?

» What will | use posts for, and how do I want to display them? In some projects, a post may be just a news item, in others it could be
something entirely different.

* How do Iwant to display my posts in archive view?

* Do I need to use custom fields with my posts? How will | do this technically, and how can lintegrate it into my theme?

» Will l use tags to further sort my content? Do | need some custom solution for this?

» How do I want to use Pages? What parts of my site should be driven by Pages, if any?

* Do I need Page templates for some part of my site?

» Will luse image galleries and other attachments in any way that needs my attention?

» Will have other content types than posts and Pages (such as text widgets)? How will these work?

* Are there any plugins | need, and do I need to worry about them in my theme? (See Chapter 11 for details about plugins.)

» Will this be a stand-alone theme, or should | add a child theme and base it on another theme? (I discuss child themes in Chapter 4.)

Depending on the kind of site that you're building, you may need to ask yourself more questions. The answers to these critical questions tell you
what template files you need to create, and how many custom elements you need to build.

Now you are set to create your theme files. The clearer the picture of your new theme, the easier it will be to make it all come together in the
end. Do take notes and make diagrams and sketches that you can refer to when you suddenly can’t remember how you chose to lay out your
site. The more details the better; when it comes to creating a theme, structure is your friend.

Your Own Theme Framework

You can save a lot of time if you stick to a theme framework you know, whether you've developed it yourself (for use on future projects), or
learned it from someone else’s work. That means you don’t have to redo the whole structure from scratch every time you start with a new site.

You can read more about theme frameworks in general in Chapter 4.

The purpose of a framework

The sole purpose of any theme framework is to save time. Whether you use it as a parent for your child themes or just as a code base to build
upon, the goal is the same. Why reinvent the wheel? No need, of course. And there’s absolutely no need to create the same basic WordPress
theme over and over again.

When building or choosing a theme framework, this is the sole notion you should focus on. It doesn’'t matter how good it looks if it doesn't fit your
needs when you want to build new stuff later. Don’t be lured off-track with bells and whistles. Your theme framework needs to be easy to build
upon, to alter, and to work with. That's it.

It is way too easy to start adding stuff and brushing it up, and then release it to the wild. Then suddenly you realize that your framework became
a regular theme. Every theme is a potential framework, but it usually means that there will be more things to override, to remove, and to alter
than there should be for a framework. That doesn’t help when you want to save time launching your next site. So stick to the purpose of your
theme framework.

Should you build a theme framework?

For those of you with time and patience, as well as the will to work, rework, and then rework it again, | definitely recommend creating your own
theme framework. It is quite fun, and the fact that you know it inside out is a great benefit.

That's the good part, because it means you'll have no trouble working with it. You know the framework; you built it, after all, and that makes it a
breeze to work with.

But, the bad part is that while your own framework may be easy to work with, it just may not be as great as the ones that you find online.
Creating a brilliant framework takes time, and you won’t get it right the first time, no matter how good your ideas are. Plus, it is constant work,
adding new features and fine-tuning the theme to be an even better framework. Chances are, it'll just reach the good-enough stage, and then
yoU'll wrestle with it every time you use it as a structure for a site.

If you lack the time to devote yourself to this, then creating a framework is probably not for you. Better to find a great theme online, learn it, and
let its author keep it up to date for you.

Releasing Themes to the public

So you plan to release your theme to the WordPress community? Good for you, and great for the community. It's always nice when someone
gives back.

When releasing you're a theme you need to make sure that it works, meets the WordPress requirements, and has all the necessary template
files. Also, document the code in a decent fashion as that makes it easier for the users to dig into it. Also, while you're at it, you may consider
shipping a readme file that answers the basic questions, if you think it is necessary.

In short, make your theme as complete as possible, so that people can actually use it. After all, that's the whole idea with releasing the theme,
right?

Getting your themes on wordpress.org

WordPress has well-documented rules for releasing a WordPress theme to the wordpress. org themes directory (see my theme in Figure 6-
2). You need to license the theme under GPL, or a compatible license, and it needs to handle the default styles (for images, floats, and so on) in
WordPress. You can download unit guidelines (at http://codex.wordpress.org/Theme Unit Test), whichincludes a database that you
can import into your test blog to make sure that you style everything appropriately.

So, why would you want to host your theme on wordpress. org when you can share it on your own Web site, and perhaps even benefit from the
traffic? Well, the main reason is that WordPress itself connects to the wordpress. org themes directory, so your users can install their themes
directly from within the admin panel (as displayed in Figure 6-3), and update them, just like with plugins. This is very user friendly.

arch WordPress.org

WORDPRESS.ORG

Free Themes Directory Welcome, tdh! | Log Out

T Go
Home Showcase Extend About Docs Blog Forums Hosting

Extend Home Notes Blog Core Theme

Plugins

Themes |
s Theme Authors Author: tdh

s My Themes 'i
T The Notes Blog Core theme is meant to —— - “

< Tk work both as a framework to build child ki e Gt e bt -

S themes on, as well as a stand alone clean — FYl

theme for your perusal. Made by TDH and

Ideas maintained at notesblog.com. Requires Netes Ty - Version: 1.0.2

Kvetch! WordPress 2.8 or higher. o Last Updated: 2010-04-20

Author Homepage »

Search Themes . Theme Homepage »

Tags: translation-ready, sticky-post, threaded-comments, light

Search Average Rating Your Rating {
WITIWITW WITIWITIS
(9 ratings)

See what others are saying...

1. .mo .po etc files
2. The Best Content Theme

fef

Figure 6-2: Notes Blog Core Theme on wordpress.org

Install “Notes Blog Core Theme"

Notes Blog Notes Blog Core
Theme

by tdh

Version: 1.0.2

Cancel

Figure 6-3: Notes Blog Core Theme from your WordPress admin panel

There’s another benefit as well, and that's credibility. That your theme is in the official WordPress themes directory means that potential users
can rest a bit easier as all themes in the directory are individually approved. So it is unlikely that you have installed malicious code by accident,
which, unfortunately, can occur. Do not be afraid to download themes from sites other than wordpress. org. Just keep an eye out, and if things
sound or look weird, then pay extra attention to the code in the theme files.

Picking the right license

If you intend to release your theme onwordpress.org it has to be licensed under GPL, or a compatible license. Otherwise, you're not
welcome in the themes directory, and you'll have to offer your theme elsewhere.

Commercial themes also exist that are licensed under GPL, and you can even see them in the wordpress. org themes directory, which
showcases some of the more popular ones (Figure 6-4 shows where you can access a commercial theme). They have the license in common,
as well as professional support solutions for their users.

Go

Home Showcase Extend About Docs Blog Forums Hosting

Free Themes Directory

@ WORDPRESS.ORG

Commercially Supported GPL Themes

While our directory is full of fantastic themes, sometimes people want to use something
that they know has support behind it, and don‘t mind paying for that. Contrary to

« Theme Authors popular belief, GPL doesn't say that everything must be zero-cost, just that when you

= My Themes receive the software or theme that it not restrict your freedoms in how you use it.

» Commercial

= More Info With that in mind, here are a collection of folks who provide GPL themes with extra paid

= Contact Us services available around them. Some of them you may pay for access, some of them are

s membership sites, some may give you the theme for zero-cost and just charge for
support. What they all have in common is people behind them who support open source,

Kvetch!
WordPress, and its GPL license.

UP Themes Overhaul Industries

Figure 6-4: Commercially Supported GPL Themes on wordpress.org

You can pick whatever license you want for your theme, whether you intend to release it for free or sell it in some fashion. How you sell it is up to
you; | wouldn’'t presume to know the ideal business model for such an endeavor. | would, however, recommend sticking to a GPL-compatible
license.

Localization

In Chapter 1, | touched briefly upon localization. By wrapping text strings in certain types of code, you can localize a theme. Thus, your theme
could be available in several languages without you altering the theme files. This is a good idea overall, but it becomes even better when you
intend to release a theme to the wild. While English is a widely used language, not all will want to use it for their site. If you have prepared your
theme for localization, then anyone can localize the strings and change the language. Remember, the language of the install dictates what
language your theme will be in, should WordPress support it. You can have a fully localized theme, but if you haven’t set the correct language
codes in wp-config.php during the install, then WordPress won’t know to try and use a language file (Figure 6-5 shows a footer in English, and
Figure 6-6 shows the same footer translated to Swedish).

Just to recap, within PHP, anything within the parentheses of () or _e () is a localized string. First you pass the string that should be
localized, and then you set the locale, like so:

<?php e(‘That\’s it - back to the top of page!’, ‘notesblog’);?>

The text That\'s it - back to the top of page! is my translatable text, and notesblog is the locale. The latter is set in my theme’s functions.php (in
this case the theme is Notes Blog):

// Localization support, fetches languages files from /lang/ folder
load theme textdomain(‘notesblog’, TEMPLATEPATH . ‘/lang’);

You canread up on load theme textdomain () inthe Codex at
http://codex.wordpress.org/Function Reference/load theme textdomain.

ABOUT

ProToolerBlog has been going
strong since 2006 and is today
the largest unofficial Pro Tools
website in the world. We

update daily with news, reviews

and more. ProToolerBlog is
not affiliated with Avid.

More about ProToolerBlog.

Copyrig

ProToolerBlog

d pro audio

NETWORK

ProToolerBlog @ Twitter
ProToolerBlog @ Youtube

FIVE RANDOM LINKS

AIR Users Blog

Innovative Music Systems

Sibelius Music — scores

DigiSample

1 That's it - back to the top of page! |

Figure 6-5: The footer on ProToolerBlog.com runs the Notes Blog theme in English

TEXT LINK ADS

posture corrector
Theater Tickets
Stephen Dent
Fisher Investment

posture corrector

Theater Tickets

Built on Notes Blog by TDH
Powered by WordPress

OM WORDCAMP TAGGAT El SENASTE FRAN LANKLISTA
STOCKHOLM 2010 SE.WORDCAMP.ORG
Det hiir &r den officiella #upbar j%&t_# him Word] i -
Bl for Wond #wpsthim talkshow NU Apple WordCamup Stociliolm 2010 ar @wordeampse pd Twitter
e D s Lanu Bjiirn Falkevik bloggat Flickr Fokus oven
Stockholm 2010. Vi kommer g -3 TDH:s blogg
uppdatera den I3pande under foton info iPed shuffle iPod touch Vi iir i full ging!
konferensen, som gir av Joakim Jardenberg Jonatan Fried Var et WordCamp Stockholm
stapeln den 23-24 oktober p& liveboard lunch Mac mini Microsoft M WordC: et 1
= ¥ 1 5] nsorer /'
Tekniska muséet i Stockholm. middeg mings NAtthacket PR S e
. eRpa e vhetsbrev plugins presentation Bronssponsor: Odd Alice
aen titt pa hdlltiderna o s 2 z WordCamp-snack pd Twitter
om natthacket fér mer ramverk SESS101 Spotify sweet Forfesta pd #wpbar tre

sunday web crunch taVll l'lg
talarlistan tdhse Twingly Twitter

winmobile se wordeamp.org workshop

information om vad det har ar

for nigonting.

© Bloggen for WordCamp Stockholm

1 officiella bloggen for WordCamp Stockholm

Byagt pa Notes Blog by TDH
Powered by WordPress

t Det var allt, tillbaka till sidans topp! 1

Figure 6-6: WordCamp Stockholm translates the Notes Blog theme footer to Swedish, thanks to a language file

Sowhydid luse e () inthe string? Well, Iwanted to echo the text, which is what it does. You probably noticed the backslash before the
apostrophe in That's. | want to make sure that the first parameter (the text | want to translate) won’t get interrupted prematurely. Another way to
solve that problem is to use quotation marks instead of apostrophes:

<?php e(“That’s it - back to the top of page!”, “notesblog”);?>
Note the difference? No backslash is needed because an apostrophe won't break the parameter.

Whenadding () and e () to your theme you can have software like Poedit (free and multiplatform, available at http: //www.poedit.net),
that creates language files for you. The .po file (the working file that you ship with your theme) makes it easy for translators to create their own
translations, whereas .mo files are actual translations. As you create these files, you may want to include them with your theme files. Name them
just like WordPress names its language files, such as sv_sE for Sweden or de_DE for Germany (see the full list at

http:

codex.wordpress.org/WordPress in Your Language).

Localization isn’t a must; your theme won't be barred from the wordpress. org theme directory without it, but it is a good thing to include. Read
more about how it works on the Codex page about translating WordPress. You'll also find links to other tools for working with language files at
http://codex.wordpress.org/Translating WordPress.

The Checklists

So, you're building your very own theme? Make sure that you refer to these checklists as they will make your life easier. Perhaps not right now,
as you're working on the code and pulling your hair out thanks to Web browser inconsistencies. But later you'll appreciate your decision to do
everything right.

The theme checklist

You need to review this checklist if you intend to release your theme into the wild and want to hostitat the wordpress.org themes directory
(which you should if you want to offer those sweet upgrade notifications via the WordPress admin). You don’t have to release your theme via
wordpress . org; how you deliver it to the world is your own choice. But check the rules when submitting your theme, as they may change.

» Themes have to be fully GPL licensed, along with all images, stylesheets, and so on.
» Themes cannot include “WordPress” or “WP” in their names.
* Likewise, themes should not include markup-related language terms in their names, such as CSS3 or HTML5.
» Themes need the following template files:
* style.css
* index.php
* comments.php
« screenshot.png (which has to be a reasonable representation of how the theme looks)
» Themes can’t have any PHP errors or similar.
» Themes can’t have any JavaScript errors.

» Themes need a valid HTML declaration (valid DOCTYPE) with the correct content type, XFN and character set. For details, see
http://codex.wordpress.org/Theme Review#Code Quality.

» Themes need to output the site’s title in the tit1le tag, using the bloginfo () template tag.
» Themes need to support widgets.
» Themes need to automatically generate feeds; add_theme support () infunctions.php helps with that if you have any problems.
» Themes should support comments.
» Themes should also support menus, post thumbnails, custom headers, and custom backgrounds, if they are suitable.
» Themes should support custom CSS for the Visual editor (with the add_editor style () template tag).
* Themes need to have the following template hooks and tags:
* wp_head () before closing the head tag.
* body class () inside the body tag.
* Scontent_width infunctions.php (defining the default content width).
* post_class () inthe postdiv tag.
*wp_ link pages () for pagination on Pages.
* Proper comment navigation for multiple pages of comments.
+ Navigational links between posts/Pages using posts_nav_link(),Or previous posts_link() and next posts_link().
*wp_footer () just before the closing body tag.
» If there is a header.php file, it is called using get _header ().
» If there is a footer.php file, it is called using get footer ().
» If there is a sidebar.php file, itis be called using get _sidebar().
» If there is a comments.php file, itis called using comments template ().
* The following template filenames are not allowed:
* page-X.php
« category-X.php
« tag-X.php
* taxonomy-X.php
* Search forms are called with get search form().
* Login forms are called withwp_login form().
* Inclusion of custom template files/parts are done with get template part (), if possible.

* The following classes are required in the stylesheet:
*alignright,.alignleft, and .aligncenter for alignments
* wp-caption, .wp-caption-text, and .gallery-caption for attachment captions
* The following classes are recommended in the stylesheet:
* sticky for sticky posts
* bypostauthor for styling author comments
» Theme links in style.css need to point to an appropriate site and page for the theme.
* Credit links need to point to relevant sites for the theme, such as the theme author or theme home page.

And finally, the theme needs to pass the Theme Unit test. Download the test database and read more about that here :
http://codex.wordpress.org/Theme Unit Test.

The theme framework checklist

If you intend to build a theme to use as a theme framework, whether it is for public release or just for your own private use, consider the following
guidelines. Nothing here is required.

» Comment your code; that makes it easier for everyone to find their way.

* Avoid hardcoded links, use bloginfo (), and similar tags.

+ Put the loop.php template file to good use, and include a unique loop.php file for every template file (such as
get template part(‘loop’, ‘author’) forthe author archives) for easy overwriting in a child theme.

» Make sure that the elements in the design are easy to get to with CSS.
* Be as general as possible in your code: The fewer template files that you need in the child theme, the better.
* Provide general fallback files; this makes it easier to create specialized template files for parts of the new site that you're building.

» Keep the code simple; don’t add too many features. Bare minimum is better; that way the child theme won't have to unregister so many
functions and null out features.

* Keep the design clean and bare; dress it up when you're building your actual site instead!
« Stay away from ugly hacks and poorly written code! Remember, you're supposed to build upon this framework.
» Make sure that your theme framework validates. After all, you're building on it and it is better to have something sound to begin with, right?

The child theme checklist

If you're building a child theme, observe the following guidelines, especially if you're releasing the child theme in any way.

» Document closely so that you know what you're overwriting.

* Solve as many issues in style.css as you can.

* Try to use loop.php template files, rather than create a ton of parent files overwriting the theme.

* Remember that the child theme’s functions.php is loaded before the parent theme’s file. You can control the latter’s features this way.
» Add screenshot.png files for child themes, as well; don’t forget that.

» Make sure that your site validates, even after activating your child theme.

Wrapping It Up

By now you have all the know-how not only to build your own WordPress theme, but to get yourself a theme framework to base future works on.
Enough’s enough, though. Next, you dig into practical examples and build some niche sites, putting your knowledge to good use.

Chapter 7: A Semi-Static Theme

The ease of use that WordPress offers means that the platform is more often used as a traditional (yet modern) CMS. WordPress works
perfectly well in this context, whether you intend to build a big newspaper site, or just a corporate or product site. The development team
understands this. After all, the default tagline isn’t “Just another WordPress blog” anymore, but “Just another WordPress site,” which is closer to
the truth in most cases. After all, blogs are often not really blogs as we tend to think of them, but Web sites with a bloggish format. Then again,
wasn'’t that the case all along?

In this chapter, you use WordPress to build a simple, yet easily modifiable, semi-static Web site, which means that some of the content is
meant to be somewhat static whereas other parts mimic the traditional news section. You can use this theme for a corporate site, a political
campaign, or just about any project where your focus is on static content. If you like the format, you could also use it as a blog or news site, but
that is not the focus.

So, let’s get started!

WordPress and Semi-Static web Sites

Before we begin, | want to clarify semi-static here. You'll be building a theme meant for (but not limited to) sites consisting mostly of Pages.
These Pages could contain a corporate bio, contact information, a list of services, or something like that. When you update static content
(Pages), you overwrite the old content and replace it with new information, or add it onto the same Page. Compare that to adding a news story
to a news category or blog post to a blog for that matter. This is how you'll build this site, but let's not get ahead of ourselves.

Our fictional semi-static Web site

The idea here is to build a site for a fictional company. You'll build a theme that can be used for that, and make sure that it is flexible and easy to
modify with child theming should it be needed.

Web site requirements
Here are the site requirements:

+ On the front page, you need the following:
* A large image that captures the company spirit.
* A short paragraph or two about the company, and links for added reading.
* The latest updates from the press section, along with the company’s latest blog posts and tweets.

+ A few content Pages about the company and its services, which you can add or remove in the WordPress admin panel without altering the
theme.

* A press section.

* A blog section.

+ Contact information with a contact form.
For this semi-static site, you focus on Pages, which can have sub-pages, as well as Page templates to customize the section. In this example,
you manage both the press section updates and blog posts using categories, but an alternative would be to use a custom post type for the

press section. The contact form is a plugin, and you change the permalink structure for category archives with another plugin. Other than that,
you have no need for additional plugins.

Moving on, you manage the menus with the Custom Menus feature, so that the client can update the site on their own. You use the Custom
Header feature, as well.

Figure 7-1 shows the preliminary sketch, made on plain old paper, since that's the way | usually work.

While I make something out of this simple sketch, you can read on about how you should make categories and Pages work together. When
you're done, | should be ready to Photoshop this baby so that we can build it . . .

Figure 7-1: Sketch from my Moleskine notebook

Making Categories and Pages Work in Harmony

Categories and Pages are completely different entities on a Web site. The former is in fact an archive page for posts, and the latter is a static
Page with content. Category posts are updated whenever a new post is added to the category; Pages are updated when you actually alter
them.

Structure-wise, categories and Pages sit on the same level, sort of. Your Pages get a permalink directly under the WordPress install root, so
yoursite.com/my-page-slug/ is the permalink for Pages. Categories on the other hand, sit under a default category label in the URL, so
that permalink is yoursite.com/category/my-category-slug/.

Why is this important? Well, you want a decent URL structure in every site you build. When building a semi-static site, this becomes even more
important.

Fixing the category URLs

First, get rid of that pesky category addition. You can change it to something else in the WordPress admin panel under the Settings sectionin
Permalinks, shown in Figure 7-2. Here you can also change the default tag labeling for tag archives.

In some cases, it'll be enough to change the category labeling to something else, especially if you just have a news section. You do that under
the Optional heading on the Permalinks Settings screen. Just change it to “news” instead of the default category, which would mean that you'd
get more appropriate URLs like yoursite.com/news/my-category-slug/. If you have company or product related news in their own
categories, you get pretty nice looking URLs such as yoursite.com/news/my-product/ and so on. Makes sense. You should remember
that whatever you change the category slug to will be used for all categories, so be careful what you pick here. Going with “news” will only make
sense if you set up a permalink structure that displays the category slug and then the post slug, and if you only have post content that would fit
under “news.”

S Help
| & - o
@ [I¥ Permalink Settings
By default WordPress uses web URLs which have question marks and lots of numbers in them, however WordPress offers you the ability to create a custom URL structure

N for your permalinks and archives. This can improve the aesthetics, usability, and forward -compatibility of your links. A number of tags are available, and here are some
examples to get you started.

Common settings

i) O Default http://10.0.1.5/ss5/2p=123
- O http://10.8.1.5/s55/2018/89/15/sample-post/
Day and name
& ® Month and name http://10.0.1.5/s55/2010/09/sample-post/
" O Numeric http://10.8.1.5/sss/archives/123
o () Custom Structure [%year¥/%monthnum¥/%postname%/
o
Optional

If you like, you may enter custom structures for your category and tag URLs here. For example, using topics as your category base would make your category links
like http://example.org/topics/uncategorized/ . If you leave these blank the defaults will be used.

Category base my-category
Tag base my-tag
Save Changes

Figure 7-2: The now probably fairly well-known Permalinks Settings screen

However, sometimes you just want to get rid of the category labeling insertion altogether. In the example site that is the case, because you'll use
categories for both the press section and the blog part of the site to separate posts. Having URLSs like yoursite.com/category/press/ and
yoursite.com/category/blog/ will look bad when compared to a contact page, for example, which would be at yoursite.com/contact/
as Pages won't get any default labeling.

Luckily there is an absolutely lovely plugin that solves this problem, called WP No Category Base (get it at
http://wordpress.org/extend/plugins/wp-no-category-base/). Justinstall and activate it, and all default category labeling is gone.
Suddenly you can have yoursite.com/press/ and yoursite.com/blog/, which you need for this project. This saves you the trouble of
having to write a custom page template for each category, and makes it easier on the end user to add sections like these — all they have to do
is add another category.

Why is this important?
Itis all about appearances. Having a nice looking URL structure makes sense for the visitor; one look at the URL shows where he is on the site.
Again, sometimes you want to insert the category label into the URL, but more often than not, it is a bad idea. In the semi-static site, you want
both the press and blog sections to be top-level alternatives, and it would look weird if they sat further down in the URL structure than other top
level items, which will be Pages.

A sound and clear URL structure is part of a site. You shouldn’t forget about that, especially not when you're mixing Pages and categories in this
matter.

The Semi-Static Theme Layout

Welcome back! I've created a basic Photoshop mock-up of the simple sketch that you see in Figure 7-1 (but any graphics program would
work). Now, you won't recreate this pixel by pixel. It is still a simple mock-up and while you'll pull some elements from it, you need to remember
that you do not have an actual client here. Your semi-static corporate Web site can be for any fictional client that you may have. If this were the
real deal, a number of wireframes, mock-ups, and so on would go back and forth with the client, along with meetings and whatnot to establish
the needs.

So, Figure 7-3 shows what the site will sort of look like when it is done.

TuE Loco

FRONT PAGE WHAT WE DO THE TEAM NEWS BLOG GET IN TOUCH

Nam vestibulum, arcu sodales
feugiat consectetur, nisl orci
bibendum elit, eu ewismod
H EADER IM AGE magna sapien ut nibh. Proin
metus odio, aliquam eger

molestie,

Vestibulum mollis mauris enim. Morbi euismod magna ac lorem rutrum elementum. NEWS & PRESS

Donec viverra auctor lobortis. Pellentesque eu est a nulla placerat dignissim. Morbi a
£ : Vestibulum mollis mauris enim
cnim in magna semper bibendum, Mor ismod magna ac lorem rutrum

Donec viverra auctor lobortis
2 Pellentesque eu est a nulla placerat dignissim
Title Ipsum

Morbi a enim in magna semper
bibendum

Etiam scelerisgue, nunc ac egestas consequat

Odio nibh euismod nulla, eget auctor

Eriam scelerisque, nunc ac egestas consequat, odio nibh euismod nulla, eget auctor

orci nibh vel nisi. Aliquam erat volutpat. Mauris vel neque sit amet nunc gravida

congue sed sit amet purus. Quisque lacus quam, egestas ac tincidunt a, lacinia vel orci nibh vel nisi
& i i e : . Aliquam erat volutpat. Mauris vel neque sit amet
velit. Aenean facilisis nulla virae urna tincidunt congue sed ut dui. Morbi malesuada nunc gravida cong sit amet purus

nulla nec purus convallis consequar. Quisque lacus quam

Egestas ac tincidunt a, lacinia vel velit
Vivamus id mollis quam. Morbi ac commodo nulla. In condimentum orei id nisl
V{)lulp;l[bibendum. Quisque commodo hendrerit lorem quis egestas. Maccenas quis

torror arcu. Vi\'ﬂ]’l’llls rutrum nunc non ncquu consecrerur {.llli!i plﬂ(&'l’ﬂ[ﬂ(.’(]llt.' LATEST BLOG POSTS

lobortis. Nam vestibulum, arcu sodales Fcugiat consecterur, nisl orci bibendum elit, eu Vestibulum mollis mauris enim
. . . 3 : Morbi euismod magna ac lorem rutrum
cuismod magna sapien ut nibh. Donec semper quam scelerisque tortor dictum elementum

gravlda. In hac habltas.w plat{.‘a dlL’tumsI. Nam pulvmar‘ mllo scd rh(ln{,’us SusCipit, Donec viverra auctor lobortis

sem diam ultrices. Pellentesque eu est a nulla placerat dignissim

Morbi a enim in magna semper
bibendum
Etiam scelerisque, nunc ac agest

Odio nibh euismod nulla, eget auctor

Figure 7-3: Photoshop front page mock-up

I've added a dummy logo and also a dummy header image. The logo will be hardcoded into the theme (which usually is OK), but the header
image won't be because the company may want to switch this from time to time.

I did a quick mock-up of how a single view, both for Pages and posts, would look as well (see Figure 7-4). Real simple, sticking to the same
site structure so to speak, as you can tell.

THE Loco

FRONT PAGE WHAT WE DO THE TEAM NEWS BLOG

HEADER IMAGE

Title Lorem Ipsum Title Des

Vestibulum mollis mauris enim. Morbi euismod magna ac lorem rutrum elementum.
Donec viverra auctor lobortis. Pellentesque eu est a nulla placerar dignissim. Morbi a

enim in magna semper bibendum.

Title Ipsum

Eriam scelerisque, nunc ac egestas consequar, odio nibh euismod nulla, eger auctor
orci nibh vel nisi. Aliquam erat volutpar. Mauris vel neque sit amet nunc gravida
congue sed sit amet purus. Quisque lacus quam, egestas ac tincidunt a, lacinia vel
velit. Aenean facilisis nulla vitae urna tincidunt congue sed ut dui. Morbi malesuada

nulla nec purus convallis consequat.

Vivamus id mollis quam. Morbi ac commodo nulla. In condimentum orci id nisl
volutpat bibendum. Quisque commodo hendrerit lorem quis egestas. Maecenas quis
tortor arcu. Vivamus rutrum nunc non neque consectetur quis placerat neque

lobortis, Nam vestibulum, arcu sodales feugiar consectetur, nisl orci bibendum elit, cu

GET IN TOUCH

Subdata area

- Page menus
 Postmeta

» Date and timestamp
« Authors

- Tags

« And so on

NEWS & PRESS

Vestibulum mollis mauris enim

Mo mod magna ac lorem rutru

Morbi a enim in magna semper
bibendum

Etiam scelerisgue, nunc ac eg

Odio nibh euismod nulla, eget auctor
orci nibh vel nisi

Aliquar ylut
nune gravide

Quisque lacus quam
cuismod magna sapien ut nibh. Donec semper quam scelerisque tortor dictum Egestas ac tincidunt a. lacinia vel velit

gravida. In hac habirasse pl.ncu dictumst. Nam pul\;inar, odio sed rhoncus suscipir,

sem diam ultrices.

Figure 7-4: Single-post view mock-up in Photoshop
What is what in the mock-ups?
Perhaps a few clarifications are in order. Take a look at the front page design first, shown in Figure 7-5.
At the top of Figure 7-5 is the header area, where the menu is a Custom Menu area so that the client can create, edit, and drop Pages there.

The right column is the sidebar that uses sidebar.php. The widget areas make it is easy for the client to throw in more functionality. The text at
the top is only shown on the front page and goes with the header image. The text widget is something the user may want to edit from time to
time, just as with the header image.

The content on the front page is actually a Page, so WordPress displays any content put into this Page here, and the client can include whatever
content they'd like. You'll create a Page template for the front page to make it behave the way we want. Outside of the editable area is the
Custom Header.

Meny 1 HE LOGO

, FRONT PAGE WHAT WE DO THE TEAM NEWS BLOG GET IN TOUCH

header.php

Widget Areas

Vestibulum mollis mauris enim. Morbi euismod magna ac lorem rutrum elementum. ’

Donec viverra auctor lobortis. Pellentesque eu est a nulla placerat dignissim. Morbi a i _
; e Vestibulum mollis mauris enim
enim in magna semper bibendum.

Donec viverra auctor lobortis

Morbi a enim in magna semper

_— . 2 . " bibendum
Eriam scelerisque, nunc ac egestas consequat, odio nibh euismod nulla, eger auctor
orci nibh vel nisi. Aliquam erat volutpat. Mauris vel neque sit amer nunc gravida :
. Odio nibh euismod nulla, eget auctor

congue sed sit amet purus, Quisque lacus quam, cgestas ac tincidunt a, lacinia vel orci nibh vel nisi

velit, Aenean facilisis nulla vitae urna tincidunt congue sed ut dui, Morbi malesuada

]llll!.el nec }‘ll['l]\ ‘l‘il‘-'w_.-lh conscquat. QquUe lacus ql'am

Vivamus id mollis quam. Morbi ac commodo nulla. In condimentum orci id nisl I r h
volutpat bibendum. Quisque commodo hendrerit lorem quis egestas. Maecenas quis]
{Orror arcu. \-l\'.lll‘.l'.\ rurrum nunc non \'.l'l}\]\' consccrerur l]l]i‘v lj..l\i:i.l ;]\'\ll\\

rcu sodales feugiat consectetur, nisl orci bibendum elit, eu Vestibulum mollis mauris enim

lobortis. Nam vestibulum, :
euismod magna sapien ut nibh. Donec semper quam scelerisque tortor dicrum

gravida. In hac habitasse platea dictumst. Nam pulvinar, odio sed rhoncus suscipit, Donac vivena auctor loborils
sem diam ultrices. i

Morbi a enim in magna semper

Page Template

Odio nibh euismod nulla, eget auctor

Figure 7-5: Front page schematics

Moving on, the footer (not in the figure, mind you) starts with another menu because it may be nice to be able to navigate from down there. To
the right is a widget area meant for dropping a Twitter widget in, and to the left is another widget area for short and quick contact information.
Below that is hardcoded copyright text, credit links, and stuff like that.

That's basically it. The single-post view, shown in Figure 7-6, is similar, but take a quick look at it as well.

Pretty self-explanatory, right? We get into the fancy stuff, such as what is shown in the sidebar, in a little while.

Meny 1 HE LOGO

, FRONT PAGE WHAT WE DO THE TEAM NEWS BLOG GET IN TOUCH

header.php

Featured Image

s

Widget Areas

- - Subdata area

Tltle LO rem Ipsum Tltle Des Page menus ‘
Postmeta

Vestibulum mollis mauris enim. Morbi euismod magna ac lorem rutrum elementum Date and timestamp

Donec viverra auctor lobortis. Pellentesque eu est a nulla placerar dignissim. Morbi a Authors

cnim In magna semper bibendum. T;_iqb

And so on

Title Ipsum

Vestibulum mollis mauris enim

Eriam scelerisque, nunc ac cgestas consequar, odio Hl‘\l', cuismod nulk

orci nibh vel nisi, Aliquam erat volurpat. Mauris vel neque sit amet

congue sed sit amet purus l‘_}il'\('ll‘ {‘\‘i‘\ quam, cgesras ac tincidunt a, ..'ILzlJ!1 \\{ Donec viverra auctor lobortis

velit. Aenean facilisis nulla virae urna rincidunt congue sed ur dui. Morbi malesuada -
nulla nec purus convallis consequar MOrbmtSI al
bibendu n

Vivamus id mollis quam. Morbi ac commodo nulla. In condimentum orci id nisl

; s g i et PR PR Odio nibh euismod nulla, eget auctor
volutpat bibendum. l\ﬁlé\'-]'il' commodo hendrerit lorem quis egestas \".unx':'.ln'!v.':\ orci nibh vel nisi
tortor arcu. Vivamus rutrum nunc neque consectetur quis placerat neque
lobortis, Nam vestibulum, arcu sodal 1t cte isl orci bibendum elit, eu

Quisque lacus quam

fﬁbéfbi'”l’ade Content

m dlam LJI

Figure 7-6: Single-post view schematics

The necessary templates
So here are the template files that you use, and how you use them:

« style.css contains all the necessary CSS styles, as well as the theme header.

+ index.php act is a fallback because it is mandatory, and will work well enough for things like search, 404, and so on.

* pagetemplate-front.php is our Page template for the front page.

» sidebar.php contains all the necessary code for the sidebar. We could’ve gone with several sidebars here, but there really is no need.
« archive controls both the Press and the Blog categories.

» single.php controls all posts in the Press or Blog categories in single view.

* page.php controls all Pages in single view.

* header.php for our header needs.

« footer.php for our footer needs.

« functions.php supports all the features that we need, as well as for widget area declarations.

That's it. Let’s build it!

Building the semi-static Site

This is where it gets interesting for real. You will build the theme from scratch, but because you already know most of these things, let's pick up
the pace a bit. From now on, lwon’t describe every little template tag in detail, but I'll add plenty of comments in the code. You probably already
know how commenting works, but in case you don't, here’s a primer.

<!-- This is a comment in HTML -->

/* This is a comment in CSS */
<?php

// This is a comment in PHP
2>

Another quick recap might be in order, and that is localization. Everything in PHP that sits within __(* and ’) are strings that can be localized
through language files. It works like this:

~_(‘Top Menu’, ‘simple-static’)

The default output is “Top Menu,” and the textdomain, defined in functions.php (we’ll do that in a little bit) that the translation belongs to is
“simple-static.” Always put the string first, and the textdomain later so that WordPress knows where the string belongs.

Right, so let's get started.

The fundamentals: style.css and functions.php
Start out by creating the style.css file where you add the theme declaration. You will fill it with CSS stuff later on, but you can start here.

/*
Theme Name: Simple Semi-Static Site
Theme URI: http://tdh.me/wordpress/simple-static/
Description: A theme meant for simple static websites, hence the name.
Version: 1.0
Tags: light, two-columns, right-sidebar, fixed-width, threaded-comments, sticky-post, translation-ready
Author: Thord Daniel Hedengren
Author URI: http://tdh.me/
This theme was originally created for use in the book
Smashing WordPress Themes, written by yours truly.

Read more about my books at http://tdh.me/books/
*/

With that out of the way, let's move on to functions.php. You need support for custom menus, custom headers, and also custom backgrounds,
because it would be pretty cool to change the body background of the site. You also need a couple widget areas. This is the necessary code,
commented inline for your viewing pleasure.

<?php
// We need a textdomain for localization support,
// with language files in the /lang folder
load theme textdomain(‘simple-static’, TEMPLATEPATH . ‘/lang’);

// This is the default content width, 600 px
if (! isset($content width))
Scontent width = 600;

// Adding theme support for post thumbnails
add theme support(‘post-thumbnails’);

// Adding theme support for custom backgrounds
add custom background() ;

// Telling WordPress to use editor-style.css for the visual editor
add editor style();

// Adding feed links to header

add theme support(‘automatic-feed-links’);

// CUSTOM HEADER

/] —mmmmmm e

// Adding theme support for custom headers

add custom image header(‘’, ‘simple-static admin header style’);

// Remove header text and null the text color
define(‘NO HEADER TEXT’, true);
define (‘HEADER_TEXTCOLOR’, My

// Default header image, using ‘stylesheet directory’ so that
// child themes will work
define(‘HEADER IMAGE’, get bloginfo(‘stylesheet directory’) . ‘/img/default-header.jpg’);

// Header width and height, 920x200 px

define(‘HEADER IMAGE WIDTH', 920);

define(‘HEADER IMAGE HEIGHT’, 200);

// Adding post thumbnail support (same size as custom header images)
set_post thumbnail size(HEADER IMAGE WIDTH, HEADER IMAGE HEIGHT, true);
// MENU AREA

// Adding and defining the Menu area found in the header.php file

register nav menus(array (
‘top-menu’ => (‘Top Menu’, ‘simple-static’),
‘bottom-menu’ => (‘Bottom Menu’, ‘simple-static’)
))i
// WIDGET AREAS
/] ——mmmm—————=
// Widget area used on the front page, on top of the header image
register sidebar(array(
‘name’ => (‘Header Text Blurb’, ‘simple-static’),
‘id’ => ‘header-text-blurb’,
‘description’ => (‘The blurb on top of the custom header.’, ‘simple-static’),
‘before widget’ => ‘<div id="header-blurb””>’,
‘after widget’ => ‘</div>’,
‘before title’ => ‘<h3 class="widget-title”>’,
‘after title’ => ‘</h3>’,
))i

// Right column widget area on front page (default output on items)
register sidebar(array(

‘name’ => (‘Front Page Right Column’, ‘simple-static’),
‘id’ => ‘front-page-right-column’,
‘description’ => (‘The right column on the front page.’, ‘simple-static’),

))i
// Right column widget area on the News/Press category
register sidebar(array(

‘name’ => (‘News and Press Right Column’, ‘simple-static’),
‘id’ => ‘news-press-right-column’,
‘description’ => (‘The right column on News/Press categories.’, ‘simple-static’),

‘before widget’ => ‘<1li id="%1$s” class="widget news %28s”>’,
‘after widget’ => ‘</1i>’,
‘before title’ => ‘<h2 class="widgettitle”>’,
‘after title’ => ‘</h2>',
))i
// Right column widget area on the Blog section
register sidebar(array(

‘name’ => (‘Blog Right Column’, ‘simple-static’),
‘id’” => ‘blog-right-column’,
‘description’ => (‘The right column on the Blog section.’, ‘simple-static’),

‘before widget’ => ‘<1i id="%1$s” class="widget blog %2$s”>’,
‘after widget’ => ‘</1i>’,
‘before title’ => ‘<h2 class="widgettitle”>’,
‘after title’ => ‘</h2>’,
))i
// Right column widget area on Pages
register sidebar(array(

‘name’ => (‘Pages Column’, ‘simple-static’),
‘id’ => ‘pages-right-column’,
‘description’ => (‘The right column on Pages.’, ‘simple-static’),

‘before widget’ => '<1i id="%1$s” class="widget pages %2$s”>’,
‘after widget’ => ‘</1i>’,
‘before title’ => ‘<h2 class="widgettitle”>’,
‘after title’ => ‘</h2>',
))i

// Left column in the footer
register sidebar(array(

‘name’ => (‘Footer Left Side’, ‘simple-static’),
‘id’ => ‘footer-left-side’,
‘description’ => (‘The left hand side of the footer.’, ‘simple-static’),

‘before widget’ => ‘<1li id="%1$s” class="widget footer %238s”>’,
‘after widget’ => ‘</1i>’,
‘before title’ => ‘<h2 class="widgettitle”>’,
‘after title’ => ‘</h2>',
))i
// Right column in the footer
register sidebar(array(

‘name’ => (‘Footer Right Column’, ‘simple-static’),
‘id’ => ‘footer-right-column’,
‘description’ => (‘The right hand column in the footer.’, ‘simple-static’),

‘before widget’ => ‘<1i id="%1$s” class="widget footer %2$s”>’,
‘after widget’ => ‘</1i>’,

‘before title’ => ‘<h2 class="widgettitle”>’,

‘after title’ => ‘</h2>’,

// Right column fallback widget area
register sidebar(array(

‘name’ => (‘Right Column Fallback’, ‘simple-static’),
‘id’ => ‘right-column-fallback’,
‘description’ => (‘The right column fallback area for those non-posts and pages.’, ‘simple-

static’),
‘before widget’ => ‘<1li id="%1$s” class="widget %2S$s”>',
‘after widget’ => ‘</1i>’,
‘before title’ => ‘<h2 class="widgettitle”>’,
‘after title’ => ‘</h2>',
))i
2>

That's actually the only thing you need in functions.php. You've added the theme support for all those cool features, included the content width
and all the widget areas. Splendid!

theme files for our shell (header, footer, and index)

Moving on, it's time to create the header.php, index.php, and footer.php template files, as well as a loop.php file for your loop needs. These are
straightforward enough, but planning ahead is key. First, let’s figure out how to build this site. This is the structure:

body
div#site
div#wrap
div#header
div#plate
div.top-menu
div#custom-header
div#content
div#sidebar-container
div#footer
div.bottom-menu
div.footer-left
div.footer-right
div#footer-bottom

You'll notice that div#menu is present twice. This is correct, but the two instances won’t behave exactly the same way. Luckily you can control
that with a class so that'll work well enough.

Next you'll glance through the necessary file, keeping sidebar.php and the loop templates for a little later.

Header.php
Start with header.php then, commented inline:

<!DOCTYPE html>
<html <?php language attributes(); ?>>

<head>
<meta charset="<?php bloginfo(‘charset’); 2>" />
<title><?php
// Changing the title for various sections on the site
if (is_home ()) {
bloginfo (‘name’);
} elseif (is category() || is tag()) {
single cat title(); echo ‘' • ' ; bloginfo(‘name’);
} elseif (is single() || is page()) {
single post title();
} else {
wp_title(’,true);
}
?></title>
<link rel="profile” href="http://gmpg.org/xfn/11” />
<link rel="stylesheet” type="text/css” media="all” href="<?php bloginfo(‘stylesheet url’); ?2>" />

<link rel="pingback” href="<?php bloginfo(‘pingback url’); 2>” />
<?php wp_head(); ?>
</head>
<body <?php body class(); ?>>
<div id="site”>
<div id="wrap”>
<div id="header”>
<?php
// Checking if it is the front page in which case we’ll use a hl
if (is_front page()) { 2>
<hl id="logo”>
<a href="<?php bloginfo(‘url’); ?>” title="<?php bloginfo(‘title’); 2>">
<?php
// Getting the site title

bloginfo(‘title’);

2>

</hl>
<?php }
// If it isn’t the front page this is what we’ll use
else { ?>
<div id="logo”>

<a href="<?php bloginfo(‘url’); ?>” title="<?php bloginfo(‘title’); ?>">

<?php
// Getting the site title
bloginfo(‘title’);
>

</div>
<?php } ?>
<div class="search”>
<?php
// The default search form
get search form();
2>
</div>
</div>
<div id="plate”>
<?php
// Checking if there’s anything in Top Menu
if (has nav menu(‘top-menu’)) {
// 1f there is, adds the Top Menu area
wp nav _menu(array (
‘menu’ => ‘Top Menu’,
‘container’ => ‘div’,
‘container class’ => ‘top-menu’,
‘theme location’ => ‘top-menu’,
)) i
}
>

<div id="custom-header”>
<?php
// Header code from Twenty Ten
// Check if this is a post or page, 1f it has a thumbnail, and if it’s a big one
if (is_singular() &&
has post thumbnail ($post->ID) &&
(/* $src, $width, Sheight */ S$image = wp _get attachment image src(
get post thumbnail id($post->ID), ‘post-thumbnail’)) &&
Simage([l] >= HEADER IMAGE WIDTH)
// Houston, we have a new header image!
echo get the post thumbnail($post->ID, ‘post-thumbnail’);

else : ?>
<?php
// The Front Page Header Text widget area
// Empty by default
if (!function exists(‘dynamic sidebar’) || !dynamic sidebar (‘front-
page-header-text-blurb’)) : endif;

?2>
<img src="<?php header image(); ?>” width="<?php echo HEADER IMAGE WIDTH; ?2>”"
height="<?php echo HEADER IMAGE HEIGHT; ?2>” alt="" />
<?php endif; °>
</div>

You'll recognize most of the code in here, but some things might need clarification. The part within the tit1e tag, which is the title of the Web
page you're on at the moment, is a simple i f/e1se check against conditional tags, checking if you're on the front page, and then doing one
thing on a category page, and doing something else, and so on. You've got the same thing going on down in the div#header where you show
the logo in two different ways, depending on where on the site you are. Or rather, if you're on the front page you display the logo within h1 tags,
but on all other parts of the site, the logo sits in div#1ogo instead. The reason for this is simple semantics: The actual Web site title is only on
the front page, including the logo, the most important thing to tell search engines. On every other page, the Page or post title is the thing search
engines need to know.

After div#header you've got div#plate, which is the div containing the whole site. At the very top of it is a menu, which obviously is
managed with the Menus feature in WordPress.

<?php
// Checking if there’s anything in Top Menu

if (has nav menu(‘top-menu’)) {

// If there is, adds the Top Menu area
wp_nav_menu(array (
‘menu’ => ‘Top Menu’,
‘container’ => ‘div’,
‘container class’ => ‘top-menu’,
‘theme location’ => ‘top-menu’,

?>

Here you check if the Menu called “Top Menu,” called via the ‘top-menu’ parameter in has_nav_menu (), has anything. If it does, you output the
menu with wo_nav_menu (), otherwise not.

Finally, you'll find the Custom Header image part below the menu, in div#custom-header. The code is in part nicked from the Twenty Ten
theme, with some alterations.

<div id="custom-header”>
<?php
// Header code from Twenty Ten
// Check if this is a post or page, if it has a thumbnail,
// and if it’s a big one
if (is_singular() &&
has post thumbnail ($post->ID) &&
(/* $src, $width, S$height */ $image = wp_get attachment image src(get post thumbnail id($post->ID
), ‘post-thumbnail’)) &&
$image[1] >= HEADER IMAGE WIDTH)
// Houston, we have a new header image!
echo get the post thumbnail($post->ID, ‘post-thumbnail’);
else : ?>

<?php
// The Front Page Header Text widget area
// Empty by default
if (!function exists(‘dynamic sidebar’) || !dynamic sidebar(‘front-page-header-text-blurb’))
endif;
>

<img src="<?php header image(); ?>” width="<?php echo HEADER IMAGE WIDTH; ?>” height="<?php echo
HEADER IMAGE HEIGHT; ?>" alt="" />
<?php endif; ?>
</div>

First you check to see if you're on a single post or Page, in which case you'll check for a featured image. That's right, if you set a featured
image on any post or Page that is used instead of the custom image. Fancy huh? Yeah, not really, but it might come in handy if you want to
illustrate something a bit more visual, especially on product Pages, or whatever.

If there is no featured image, you first output a widget area, which contains the Header Text Blurb. This displays only on the Custom Header
images that you've uploaded from within the admin panel, which is shown in Figure 7-7.

Help

@ |87 Custom Header

Header Image

Preview
=
£
a0
= Upload Image ')
Tl You can upload a custom header image to be shown at the top of your site instead of the default one. On the next screen you

will be able to crop the image.
Images of exactly 920 x 200 pixels will be used as-is.

Choose an image from your computer:

“valj fil) Ingen fil har valts Upload

Remove Image ' ’ ’
9 This will remove the header image. You will not be able to restore any customizations.

Remove Header Image

Reset Image R B) E g
9 This will restore the original header image. You will not be able to restore any customizations.

Restore Original Header Image

Figure 7-7: Custom Header images screen in WordPress admin panel

Under the widget declaration you'll find the image code that outputs the custom header.

<img src="<?php header image(); 2>” width="<?php echo HEADER IMAGE WIDTH; ?2>”"
height="<?php echo HEADER IMAGE HEIGHT; ?>” alt="" />

Height and width is pulled from the functions.php file; | bet you recognize the HEADER IMAGE_WIDTH and HEADER _IMAGE_HEIGHT, as
well as the header image () template tag in the img tag.

That's it for the header. When it ends you've got both div#site and div#wrap open, as well as div#plate, inside which the rest of the site
will reside.

Index.php
You won't use index.php really, but the theme needs it as a fallback (and to be a valid theme). So here itis, as bare as it can be.

<?php get header(); 2>
<div id="content”>
<?php get template part(‘loop’, ‘index’); 2>
</div>

<?php get sidebar(); 2>
<?php get footer(); 2>

Not much to talk about here: you fetch the header and then call the loop with get template part (). You'll remember that this template tag
first looks for loop-X.php where X is the second (optional) parameter passed; in this case index so it is looking for loop-index.php. It won't find
it, so it'll revert to loop.php instead, which exists and we get to in a little bit. The purpose for this is to let child themers get to the loop in
index.php by including a loop-index.php template file with the loop they want.

Finally, index.php is wrapped up with a sidebar and footer inclusion.

Footer.php

The footer.php template file is pretty straightforward. The first thing that happens in div#footer is a menu check much like the one in
header.php. If there’s a header, you output it. You can reach it by applying a Custom Menu to the Bottom Menu area in the admin panel (see
Figure 7-8).

Hello world!
Welcome to WordPress. This is your first post. Edit or delete it, then start blogping!

NEWS BLOG GALLERY ABOUT

WELCOME SEARCH THE SITE

Proin orci sagittis. Ut et semper dignissim pellentesque mollis sollicitudin enim rem massa ut Search for: (Search)

proin. Mollis gravida ac donec varius pharetra. Ullamcorper deserunt libero. Et consectetuer

dolor turpis lorem vel.

The Epic Test Blog is proudly powered by WordPress y

Figure 7-8: The clean and simple footer

<div id="footer”>

<?php
// Checking if there’s anything in
Bottom Menu
if (has nav menu(‘bottom-menu’)) {
// If there is, adds the Bottom Menu area
wp_nav_menu(array(
‘menu’ => ‘Bottom Menu’,
‘container’ => ‘div’,
‘container class’ => ‘bottom-menu’,
‘theme location’ => ‘bottom-menu’,
));
}
?>
<div class="footer-left”>

<?php
// The Footer Left Side widget area
dynamic sidebar (‘footer-left-side’);
?>
<1li class="widget widget-area-empty”>You should drop a widget here,
mate!</1i>
<?php endif; °?>

</div>
<div class="footer-right”>

<?php
// The Footer Right Side widget area
dynamic sidebar (‘footer-right-side’);
?>
<li class="widget widget-area-empty”>You should drop a widget here too,
buddy!</11i>
<?php endif; °?>

</div>

<div id="footer-bottom”>
<p><?php bloginfo(‘title’); ?> is proudly powered by WordPress</p>
</div>
</div>

</div> <!-- ends #plate -->
</div> <!-- ends #wrap -—>
</div> <!-- ends #site -—>
<?php wp footer(); 2>
</body>
</html>

You've got two widget areas at the bottom of the page, a larger column to the right (div. footer-1left)and a smaller one to the right
(div.footer-right). Both output text that tells you to add widgets to the area should you not have done so already.

Finally, div#footer-bottom contains some basic information, and then you close your div#site, div#wrap, and div#plate div tags.
Below thatis the wp_footer () template tag that wraps up WordPress.

That's the primary shell, but | left out sidebar.php, as well as the loop templates. Let's take a look at those, shall we?

The various sidebars

You're sticking with one sidebar.php file, although it would be possible to use several. The code separates the various sidebar views with
conditional tags. For example, you can use this code to check if it is the front page and, ifitis, output the appropriate widget area:

// We want to show the right sidebar for the right area
// Checking to see if it is the front page
if (is_front page()) {
// The Front Page Right Column widget area
dynamic_sidebar (‘front-page-right-column’); // -- Check ends

You've got three other sidebar views to take into account: one for the press section, which shows the latest press updates and a similar one for
the blog section, which sticks to blog posts. Finally, there’s the one for all the static Pages, which most likely contains a mixture of this. You show
the correct sidebar using conditional tags, and every one of them contains their own widget area, so that it'll be easy for the client to drop things
init, like polls for the blog section, or whatever.

Let's take it from the top. The first thing you want is to check if you're on a single post or Page view, in which case, you output some post meta
information or a Page menu, respectively.

// Single posts and Pages needs some meta data, but NOT the front page

if (is_singular() &! is front page()) { 2>
<1li id="postmeta” class="widget”>
<h2><?php echo _ (‘Information’, ‘simple-static’); ?></h2>
<?php
// This is for Pages only
if (is page()) { ?>
<p><?php echo _ (‘Page created ', ‘simple-static’); ?><?php the date(); ?> <?php echo _ (‘by’,
‘simple-static’); ?> <?php the author(); ?></p>
<?php

// Pages should have a page menu
wp_ list pages();
2>

<?php }
// This is for posts only
if (is_single()) { 2>
<p><?php the category(‘' • ‘); 2> • <?php echo
_ (‘Written on ', ‘simple-static’); ?><?php the date(); 2> @ <?php the time(); ?> <?php echo (‘by’, ‘simple-
static’); ?> <?php the author(); ?></p>
<p><?php the tags(); ?></p>
<?php } ?>

</1i>

With is_singular () you can get to both single posts and single Pages. The «! tells WordPress that it not applies to something, in this case
is_front_page (). Since the front page is meant to be a Page, this would be true otherwise, so you need to remove that.

After this little code snippet, you have all your widget area checks.

// Checking to see if it is the front page

if (is_front page()) {
// The Front Page Right Column widget area
dynamic sidebar (‘front-page-right-column’); // -- Check ends

}
// Checking to see if it is related to the News category
// This widget area is empty by default

elseif (is category(‘news’) || in category(‘news’)) {
// The News and Press Right Column widget area
dynamic sidebar (‘news-right-column’); // -- Check ends

}
// Checking to see if it is related to the Blog category
// This widget area is empty by default

elseif (is category(‘blog’) || in category(‘blog’)) {
// The Blog Right Column widget area
dynamic sidebar (‘blog-right-column’); // -- Check ends

}
// Checking to see if it is a Page
// This widget area is empty by default

elseif (is page()) {
// The Pages Right Column widget area
dynamic sidebar (‘pages-right-column’); // -- Check ends
}
else {

// Fallback widget area for everything else

// This widget area is empty by default
dynamic_sidebar (‘right-column-fallback’); // -- Check ends
}

Conditional tags in action!

That's it, then? Not quite. Although you could have used plugins to do something similar, this example uses two extra loops to fetch the latest
posts from the News and Blog categories, respectively. Let’s look at the first loop:

<?php
// Let’s get the latest News posts with a loop
Snews _query = new WP Query(array (
‘category name’ => ‘news’,
‘posts per page’ => 5)
)i 2>

<?php
// Any posts? Yay, let’s loop ‘em!
if (Snews query->have posts()) { ?>
<?php while (S$news query->have posts()) : Snews query->the post(); 2>
<1li class="latest-box-story”>
<hd4><a href="<?php the permalink(); ?>"><?php the title(); ?></hd>
<?php the excerpt(); 2>
</1li>
<?php endwhile; // Loop ends 2>
<?php } ?>

The first part gives you a new loop in snews _query so that you won't risk clashing with other loops on the site. Pass some data, the category
name (with category name) and the number of posts you want to fetch (5, with posts_per page)to WP_Query and store that in
$news_category SO you have something to play with. You might recognize the parameters in WP_Query; they're the same as

query posts().

After that it gets easy. If there are any posts in snews _query, you loop them (five times since, that’s what you stored in it) and for each post,
output the title and excerpt within an 11 tag. When you've done that, you're done.

You want a box with the five latest news posts on the front page, on the News category page, and on posts in the News category, so put a
conditional check for those things before running the loop. That way you won't get the news posts box in the wrong places.

<?php
// Showing latest News box on front page and News category
if (is_front page() || is category(‘news’) || in category(‘news’)) { 2>
<1li class="latest-box widget”>
<h3>News & Press</h3>

<?php
// Let’s get the latest News posts with a loop
Snews query = new WP Query(array (
‘category name’ => ‘news’,
‘posts per page’ => D)
)i 2> -
<?php
// Any posts? Yay, let’s loop ‘em!
if (Snews query->have posts()) { ?>
<?php while (S$news query->have posts()) : Snews query->the post(); 2>
<1li class="latest-box-story”>
<hd4><a href="<?php the permalink(); ?>"><?php the title(); ?></hd>
<?php the excerpt(); 2>
</1li>
<?php endwhile; // Loop ends 72>
<?php } ?>

</1li>
<?php }

?>

Now you do the same with the Blog category, that contains all your blog posts. However, this category is only shown on the front page (just like
the News category) and on the Blog category and posts within it. You'll recognize the code . . .

<?php
// Showing latest Blog posts on front page and Blog category
if (is_front page() || is category(‘blog’) || in category(‘blog’)) { 2>

<1li class="latest-box widget”>
<h3>Latest blog posts</h3>

<?php
// Let’s get the latest News posts with a loop
Snews _query = new WP Query(array (
‘category name’ => ‘blog’,

‘posts per page’ => 5)

)i 7>
<?php
// Any posts? Yay, let’s loop ‘em!
if ($news query->have posts()) { ?>
<?php while (Snews query->have posts()) : Snews query->the post(); ?>
<li class="latest-box-story”>
<h4><a href="<?php the permalink(); ?>”><?php the title(); ?></h4>
<?php the excerpt(); ?>
</1li>
<?php endwhile; // Loop ends ?>
<?php } ?>

</1li>
<?php }
2>

That's it! Here's the full sidebar code, commented inline.

<div id="sidebar-container”>
<ul id="sidebar”>

<?php
// Single posts and Pages needs some meta data,
// but NOT the front page
if (is_singular() &! is front page()) { 2>
<li id="postmeta” class="widget”>
<h2><?php echo (‘Information’, ‘simple-static’); ?></h2>
<?php
// This is for Pages only
if (is page()) { 2>
<p><?php echo (‘Page created ', ‘simple-static’); ?><?php the date(); ?> <?
php echo (‘by’, ‘simple-static’); ?> <?php the author(); ?></p>
<?php
// Pages should have a page menu
wp_list pages();
>
<?php }
// This is for posts only
if (is_single()) { 2>
<p><?php the category(‘ • ‘); ?> •
<?php echo (‘Written on ', ‘simple-static’); ?><?php the date(); ?> @ <?php the time(); ?> <?php echo

__(‘by’, ‘simple-static’); ?> <?php the author(); ?></p>
<p><?php the tags(); ?></p>
<?php } ?>

</1li>
<?php }
// We want to show the right sidebar for the right area
// Checking to see if it is the front page
if (is_front page()) {

// The Front Page Right Column widget area

dynamic_sidebar (‘front-page-right-column’); // -- Check ends

}
// Checking to see if it is related to the News category

// This widget area is empty by default

elseif (is category(‘news’) || in category(‘news’)) {
// The News and Press Right Column widget area
dynamic_sidebar (‘news-right-column’); // -- Check ends

}
// Checking to see if it is related to the Blog category

// This widget area is empty by default

elseif (is category(‘blog’) || in category(‘blog’)) {
// The Blog Right Column widget area
dynamic_sidebar (‘blog-right-column’); // -- Check ends

}
// Checking to see if it is a Page

// This widget area is empty by default
elseif (is page()) {
// The Pages Right Column widget area
dynamic_sidebar (‘pages-right-column’); // -- Check ends

else {
// Fallback widget area for everything else
// This widget area is empty by default
dynamic_sidebar (‘right-column-fallback’); // -- Check ends

}
2>

You will keep most of your loops in the loop.php template. All get template part () calls, which are used to include the loop (much like

get sidebar () is used to include the sidebar.php template file, for example), are pointing to a specific loop template file for each template

<?php
// Showing latest News box on front page and
// News category
if (is_front page() || is category(‘news’) || in category(‘news’)) { ?>
<1li class="latest-box widget”>
<h3>News & Press</h3>

<?php
// Let’s get the latest News posts with a loop
Snews _query = new WP Query(array (
‘category name’ => ‘news’,
‘posts per page’ => 5)
)i 7> S
<?php
// Any posts? Yay, let’s loop!
if (Snews query->have posts()) { ?>
<?php while (S$news query->have posts()) : Snews query->the post(); 2>
<li class="latest-box-story”>
<hd4><a href="<?php the permalink(); ?>"><?php
the title(); ?></h4>
<?php the excerpt(); 2>

<?php endwhile; // Loop ends ?>
<?php } ?>

</1li>
<?php }
2>
<?php
// Showing latest Blog posts on front page and
// Blog category
if (is_front page() || is category(‘blog’) || in category(‘blog’)) { ?>
<li class="latest-box widget”>
<h3>Latest blog posts</h3>

<?php
// Let’s get the latest News posts
// with a loop
$newsiquery = new WP Query(array (
‘category name’ => ‘blog’,
‘posts per page’ => 5)
)i 2>
<?php
// Any posts? Yay, let’s
loop! if (Snews query->have posts()) { ?>
<?php while (Snews query->have posts()) : Snews query->the post(); ?>
<li class="latest-box-story”>
<h4><a href="<?php the permalink(); ?>"><?php
the title(); ?></h4>
<?php the excerpt(); 72>
</1li>
<?php endwhile; // Loop ends ?>
<?php } ?>

</1li>
<?php }
>

</div>
The loop template

respectively. In other words, the index.php template points to loop-index.php, whereas page.php points to loop-page.php, and so on. Whenever

the specific loop template file is missing, WordPress will try loop.php, and that's what you've got. You're doing it this way to make it easy to
pinpoint specific template file loops in child themes.

So, what about loop.php then, and what do you need in it to make the theme work? The first thing you have is the 404 error message for when a

page isn’'t found.

<?php
// No posts to show, the famous 404 error message
if (! have posts())
?>
<div id="post-0” class="post error404 not-found”>
<hl class="entry-title”><?php (‘Page Not Found’, ‘semi-static’); ?></hl>
<div class="entry-content”>
<p><?php
// Error message output (localized)
__(‘There is nothing here, besides this page which will tell you no more than
that.

Why not try and search for whatever it was you were looking for?’,
‘semi-static’);
?></p>
<?php get search form(); ?>
</div>
</div>
<?php endif; ?>

Basically this is a localized error message, and then the search form. Simple enough, right? The actual loop isn’'t much more complicated:

php
// The default loop
while (have posts()) : the post();

// If it’s an archive or search result

if (is_home() || is archive() || is_search())
>
<div id="post-<?php the ID(); ?>"” <?php post class(); ?>>
<h2 class="entry-title”><a href="<?php the permalink(); ?>” title="<?php echo (‘Permalink to

‘, ‘simple-static’); the title(); ?>” rel="bookmark”><?php the title(); ?></h2>
<div class="entry entry-excerpt”>
<?php the excerpt(); ?>
</div>

<?php // Everything else
else : 2>

<div id="post-<?php the ID(); ?>"” <?php post class(); 2>>
<hl class="entry-title”><?php the title(); ?></hl>
<div class="entry entry-content”>
<?php the content(); ?>
<?php wp_link pages(array(‘before’ => ‘<div class="page-1link”>" . (

‘Pages:’, ‘semi-static’), ‘after’ => ‘</div>’)); 2>
</div>
<?php // Let’s check to see if the comments are open
if (comments open()) { ?>

<div class="entry-meta”>

<?php echo _ (‘There are’, ‘simple-static’); ?> <?php
comments popup link((‘no comments - pitch in!’, ‘semi-static’), _ (‘1 comment’, ‘semi-static’), (‘%
comments’, ‘semi-static’)); ?>

<?php edit post link(_ (‘Edit’, ‘semi-static’), ‘<span class="meta-
sep”>| ’, ‘’); ?>
</div>
<?php } ?>

<?php endif; ?>

</div>
<?php

// If the comments are open we’ll need the comments

// template
if (comments open()) {
comments template('/, true);

}

>

<?php endwhile; 7>

First start the loop (with while and the whole have posts () thing), then check to see if you're on either the home page (should you display
posts on the front page), on an archive (categories, tags, and other taxonomies fall in here), or if it's a search result. If true, you get a simple post
listing displaying the linked post title and the excerpt.

If you're not in any of those sections, you move on to, well, everything else. In this case, that’s just singular posts. So your title isinan h1 tag,
unlinked, and you output the full content with the content () and so on. This is basically how a post looks.

This little part is important to know.

<?php
// If the comments are open we’ll need the comments template
if (comments open()) {
comments template('/, true);
}
>

It checks to see if comments are open, and if they are, it outputs the comments template. This is nice because if your comments are closed, you
won’t have to look at the “Sorry, comments are closed” message, as it won’t even be called.

Here’s the complete loop.php template:

<?php
// No posts to show, the famous 404 error message
if (! have posts())
?>
<div id="post-0” class="post error404 not-found”>
<hl class="entry-title”><?php (‘Page Not Found’, ‘semi-static’); ?></hl>
<div class="entry-content”>
<p><?php
// Error message output (localized)
__(‘There is nothing here, besides this page which will tell you no more than
that. Why not try and search for whatever it was you were looking

for?’, ‘semi-static’);
?></p>
<?php get search form(); ?>

</div>
</div>
<?php endif; ?>
<?php
// The default loop
while (have posts()) : the post();
// If it’s an archive or search result
if (is_home() || is_archive() || is search())
?>
<div id="post-<?php the ID(); ?>"” <?php post class(); ?2>>
<h2 class="entry-title”><a href="<?php the permalink(); ?>” title="<?php echo (‘Permalink to
', ‘simple-static’); the title(); ?>” rel="bookmark”><?php the title(); ?></h2>
<div class="entry entry-excerpt”>
<?php the excerpt(); 2>
</div>
<?php // Everything else
else : ?>
<div id="post-<?php the ID(); ?>"” <?php post class(); ?2>>
<hl class="entry-title”><?php the title(); ?></hl>
<div class="entry entry-content”>
<?php the content(); 2>
<?php wp link pages(array(‘before’ => ‘<div class="page-link”>" . (
‘Pages:’, ‘semi-static’), ‘after’ => ‘</div>’)); 2>
</div>
<?php // Let’s check to see if the comments are open
if (comments open()) { 2>
<div class="entry-meta”>

<?php echo (‘There are’, ‘simple-static’); ?> <?php
comments popup link((‘no comments - pitch in!’, ‘semi-static’), (‘1 comment’, ‘semi-static’), (‘%
comments’, ‘semi-static’)); ?>

<?php edit post link(_ (‘Edit’, ‘semi-static’), ‘<span class="meta-
sep”>| ’, ‘’); 2>
</div>
<?php } ?>

<?php endif; ?>
</div>
<?php

// 1f the comments are open we’ll need the
// comments template
if (comments open()) {
comments template(‘', true);

}
2>

<?php endwhile; ?>

The front page template

This theme is built to have a static Page as the front page. You want to keep that free of the Page title and stuff, so for this Page template, which
you can call pagetemplate-frontpage.php, you don't want to keep the loop in a separate file. Here’s the whole thing.

<?php
/%
Template Name: Front Page
*/
?>
<?php get header(); 2>
<div id="content”>

<?php
// The front page loop
while (have posts()) : the post(); 2>
<div id="post-<?php the ID(); ?>" <?php post class(); 2>>
<div class="entry entry-content”>
<?php the content(); ?>
</div>
</div>
<?php endwhile; ?>
</div>

<?php get sidebar(); 2>
<?php get footer(); 2>

To use it, just create a Page (called “Welcome” or something similar) in the WordPress admin panel and then apply the template called
Frontpage to it. Then go to Settings and click Reading to see the Page displayed in Figure 7-9. Select your Page as the front page on your site
from the drop-down menu.

The Frontpage template, shown in Figure 7-10, is displayed.

Now your newly created Page, with the Frontpage template, will be the first thing that greets your visitors. Swell.

Help

@ [I¥ Reading Settings

SR PR e (OYour latest posts

i3] @A static page (select below)
& Front page: Welcome $
15 Posts page: Updates '
=

Blog pages show at most 10 posts
L:_I'I_‘ Syndication feeds show the 10 items

most recent

Ry
wt

& For each article in a feed, show @ Full text
T () Summary
Encoding for pages and feeds UTF-8 The character encoding of your site (UTF-8 is recommended, if you are

adventurous there are some other encodings)

Figure 7-9: Under Settings, click Reading to select your Front page

Screen Options Help

f 4 | Edit Page

Page updated. View page
il
. Welcome Eabich
D Permalink: http://10.0.1.5/ss5/ | View Page e Chanpes

Status: Published Edit
0 Upload/insert = &8 2 3 Visual HTMI Visibility: Public Edit
e || g=— e || e || o | | .
B | I & =i &« E E|=E =¥ |3 & Y] Published on: Sep 20, 2010 @ 16:10 Edit
D Format U | E[A @) B E|E ©
e o 5 Move to Trash [Update
e This is the front page. This text is content saved on the actual Page, which in turn have the Frontpage M _——
a0 Template picked as a Template from the Page Attributes box. Very nifty. :
T Now, to fill it out some more, here's a photo and some pretty latin words! ! e
: Parent

Ly
% Lorem Ipsum baby! : P z

Lorem ipsum dolor sit amet, convallis ornare mi diam vivamus, nascetur o Template

elit. Praesent vel, dolor netus. Posuere lorem adipiscing, vulputate id
ipsum sed luctus fringilla, massa nesciunt scelerisque integer ut potenti
lorem. Nec cras ornare urna, sed eget sed lacus risus mauris, varius Order
libero lacinia feugiat vel quis libero, ultricies pede gravida iaculis . 0
suspendisse nullam inceptos, pellentesque porta sed. Ultricies +

.23

Frontpage Template %

.

Need help? Use the Help tab in the upper right
Path: of your screen.

Word count: 148 Last edited by tdh on September 20, 2010 at 4:26 pm

Featured Image
Custom Fields

Set featured image

Figure 7-10: Editing the front page using the Front Page template

News and Blog templates

The press and blog sections are both categories. You could have used different category templates to manage these (category-press.php and
category-blog.php for example), but instead you're using a general archive.php template instead, since that's a fallback for them both and also
works with other taxonomies (both tags and custom stuff).

Start by taking a look at the archive.php template file:
<?php get header(); 2>

<div id="content”>
<hl id="taxonomy-title”>

<?php
echo _ (‘Browsing ', ‘simple-static’);
if (is_category()) {
single cat title();
} elseif (is tag()) {
single tag title();
}
2>

</h1l>

<?php get template part(‘loop’, ‘archive’); 2>
</div>

<?php get sidebar(); ?>
<?php get footer(); 2>

The contents of the h1#archive-title is a simple conditional check to see if you're on a category or tag archive, and outputting the category
or tag respectively depending on the resullt.

The fact that you're relying on archive.php for these things makes it really easy to overwrite, even if you need more fine-grained control than just
editing the loop for archive.php (you'll reach that on loop-archive.php, as you've probably seen already). There are several layers of category
and tag templates that takes precedence over archive.php, so you can overwrite it that way without much hassle.

If vou want. vou could stvie these two cateqories differently, mavbe making the news section feel a bit more “official”’ than the bloqg section.

but that's just some CSS wizardry, so well leave that for now: In case you're curious as to howto do that, check out the CSS classes that
post_class () outputs forevery div.post. Youll find classes for categories, tags, and so on in there, letting you get to the content easily

enough.

Wait, what about the stylesheet?

Oh yeah, you need some styling as well. This is a pretty straightforward design, there’s nothing particularly complicated in here either.

A few things are worth mentioning though, and that is the classes for styling the top right text widget on the front page. Look for div#header-
blurb in the code. Other than that, this is pretty straightforward. So l'll let the code speak for itself; it is commented as well.

/*
Theme Name: Simple Static Site
Theme URI: http://tdh.me/wordpress/simple-static/
Description: A theme meant for simple static websites, hence the name.
Version: 1.0
Tags: light, two-columns, right-sidebar, fixed-width, threaded-comments, translation-ready, custom-header, custom-
background, custom-menu, editor-style
Author: Thord Daniel Hedengren
Author URI: http://tdh.me/
This theme was originally created for use in the book
Smashing WordPress Themes, written by yours truly.

Read more about my books at http://tdh.me/books/
*/
/* RESET

body, hl, h2, h3, h4, h5, h6, p, form, img, ul, ol,
table, tbody, thead, tr, td

{

margin: O;

padding: 0O;

border: 0;

vertical-align: baseline;

}
/* LAYOUT

#site {
width: 100%;
}
#wrap {
width: 960px; /* The full site width */
margin: 40px auto;
}
#header {
width: 100%;
float: left;

hl#logo, div#logo {
width: 620px;
float: left;
}
div.search ({
width: 320px;
float: right;
text-align: right;
}
div#header-blurb { /* The text blurb on the front page header */
position: absolute;
width: 260px;
margin-left: 620px;
background: url (img/white-50.png) ;

div#header-blurb p {
padding: 20px;
}
#plate {
width: 100%;
float: left;
background: #fff; /* This is the actual site background */
}
div.top-menu {
width: 100%;
float:left;
background: #d5cba’7;

div.top-menu ul {}
div.top-menu ul 1i {
float: left;
list-style: none;
padding: 15px 0;
}
#custom-header {
float: left;

padding: 20px;
}
f#content {

width: 620px; /* Active content width is 600 px due to left margin */
float: left;

div.post, div.page, hl#archive-title {
padding-left: 20px; /* The left margin */
margin-bottom: 30px;
}
div.entry-content, div.entry-meta {
margin-bottom: 24px;
}
div.entry-meta {
padding: 20px;
background: #fé6fbef;
border: 1lpx solid #f3ecd2;
border-width: 1px 0; /* Only top and bottom */
}

/* Comments style */
h3f#comments {
margin-bottom: 10px;
padding-bottom: 10px;
border-bottom: lpx solid #888;
}
h3#comments, div.navigation, ol.commentlist, div#respond {
margin-left: 20px; /* Getting the left column right */
}
ol.commentlist {
margin-bottom: 20px;
}
1i.comment {
list-style: none;
margin-top: 10px;
}
1li.depth-1 {
padding-bottom: 10px;
border-bottom: lpx solid #888; /* Bottom border on top
level comments */

div.comment-author {}
div.comment-author img.avatar {
float:left;
margin-right: 10px;
}
div.comment-meta, div.comment-body p {
margin-bottom: 10px; /* Adding some space */
}
ul.children {
margin-left: 20px; /* Left margin for replies in
threaded comments */
}
div.reply { /* Reply link in threaded comments */
padding-top: 5px;
text-align: right;
border-top: lpx solid #bfbfbf;

div#respond {} /* The reply to comments box */
form#fcommentform {
margin-top: 10px;
padding: 20px 20px 10px 20px; /* We only need 10px
bottom */
background: #fé6fbef;

form#commentform p {
margin-bottom: 10px;
}
form#commentform input {
margin-right: 10px;
padding: 3px; /* Some space in input fields */
width: 200px;
}
textareaf#fcomment {
width: 540px;
padding: 10px;
}
#sidebar-container {
width: 320px; /* Active sidebar width is 300 px due to right margin */
float: right;

ulf#sidebar {
padding-right: 20px; /* The right margin */
}
ulf#sidebar 1i {
list-style: none;
}
1li.widget {

margin-bottom: 20px;
}
li#postmeta {}
li#postmeta h2 {
margin-bottom: 4px;
}
1li.pagenav {
background: #fé6fbef;
padding: 10px;
margin-bottom: 20px;
font-weight: bold;

li.pagenav ul {
margin-top: 5px;
}
li.pagenav ul li.page item {
margin-top: 5px;
border-width: 0 0 1lpx 0;
}
li.pagenav ul li.current page item {}
li.latest-box {
padding: 20px;
background: #f6f5ef;

li.latest-box-story {
margin-top: 10px;
}

#footer {
width: 100%;
float: left;

padding: 20px 0;

div.bottom-menu {
float: left;
padding: 10px 20px;

div.bottom-menu ul {
width: 920px; /* Full width 960 px -40px padding
from div.bottom-menu */
float: left;
padding: 10px 0;
border: 1lpx solid #d5cba7;
border-width: 1lpx 0;

div.bottom-menu ul 1i {
float: left;
padding: 0 5px;
list-style: none;
}

div.footer-left {
width: 620px; /* Active width is 600 px due to left margin */
float: left;

div.footer-left ul {
padding-left: 20px;
}
div.footer-left ul 1i {
list-style: none;

}

div.footer-right {
width: 320px; /* Active width is 300 px due to right margin */
float: right;

div.footer-right ul {
padding-right: 20px;
}
div.footer-right ul 1i {
list-style: none;
}
#footer-bottom {
width: 100%;
float:left;

#footer-bottom p {
padding: 20px 20px 0 20px;
}
/* LINKS

#logo a {
color: #000;
text-decoration: none;

}

div.top-menu ul li.menu-item a {
padding: 15px 20px;
color: #2d2d2d;

border: 1lpx solid #f3ecd2;
border-width: 0 1px 0 0;
text-decoration: none;
font-weight: bold;

div.top-menu ul li.menu-item a:hover {
color: #fff;
background: #985;
}
div.entry a, h2.entry-title a {
color: #630;
text-decoration: none;

div.entry a:hover, h2.entry-title a:hover {
color: #a80;
text-decoration: underline;
}
div.entry-meta a, ul#sidebar a, div#footer a, li.comment a {
color: #222;
text-decoration: none;

div.entry-meta a:hover, ul#sidebar a:hover, div#footer a:hover, li.comment a:hover {
color: #000;
text-decoration: underline;
}
span.meta-category a {
color: #887b4c !important;
text-transform: uppercase;
font-weight: bold;
}
/* TYPOGRAPHY

#header, div.top-menu, div.bottom-menu, #sidebar,
div.comment-author, div.comment-meta, div.reply,
hl, h2, h3, h4, h5, h6 {
font-family: Helvetica, Arial, sans-serif;
}
hl#logo, div#logo, div.entry p, #footer-bottom,
input, textarea, div#header-blurb p {
font-family: ,Adobe Garamond Pro“, Garamond, Georgia, ,Times New Roman"“, serif;
}
hl#logo, div#logo {
font-weight: normal;
font-size: 48px;
font-variant: small-caps;
}
div#header-blurb p {
font-style: italic;
line-height: 24px;
}
div.entry p {
font-size: 16px;
line-height: 24px;
margin-bottom: 16px;
}
div.comment-body p, div.entry-meta, li.menu-item, h2.widgettitle,
li.latest-box-story h4, input, textarea ({
font-size: 14px;
}
1i.menu-item {
line-height: 14px;
text-transform: uppercase;
}
div.search, ul#sidebar 1i, div.reply,
div.comment-author, div.comment-meta {
font-size: 12px;
}
1li.widget {
color: #666;
}
li.widget p {
margin-bottom: 8px;
line-height: 18px;
}
hl.entry-title, hl#archive-title ({
font-size: 36px;
line-height: 36px;

hl.entry-title {
margin-bottom: 24px;
}
hl#archive-title {
margin-bottom: 36px;
}
hl#archive-title span {
font-weight: normal;
color: #666;

h2.entry-title {
font-size: 24px;
line-height: 24px;
margin-bottom: 6px;

}

div.entry h2 {
margin: 48px 0 12px O;

}

h2.widgettitle, li.pagenav {
text-transform: uppercase;
margin-bottom: 8px;

li.latest-box h3 {
text-transform: uppercase;
color: #887b4c;

li.latest-box-story p {
margin: 4px 0 0 0;
color: #666;
line-height: 12px;

li.pagenav ul { /* Fix for Pages lacking proper h2 */
text-transform: none;
margin-bottom: 0;
font-weight: normal;

}

span.meta-category {
color: #666;

}

div.comment-author, div.comment-meta {
line-height: 16px;

}

li.widget-area-empty {
color: red;

}

input {
font-style: italic;

}

/* WORDPRESS STYLES

img.alignleft ({
float:left;
margin: 0 15px 15px 0;
}
img.alignright {
float:right;
margin: 0 0 15px 15px;
}
.wp-caption {
padding: 10px 7px;
border: 1lpx solid #bfbfbf;
font-size: 12px;
color: #888;
font-style: italic;
text-align:center;
}
p.wp-caption-text {
margin:10px 0 0 0 !important;
padding:0;
line-height: 14px !important;
}
div.gallery {
margin-bottom: 1l4px;
}
dl.gallery-item {}
dt.gallery-icon {}
img.attachment-thumbnail {
border:0;
}
dd.gallery-caption {
margin-top: 8px;
font-size: 12px;
color: #888;
font-style: italic;
}

There’s another stylesheet as well, the one for the Visual editor in the admin panel. It is called editor-style.css and is really simple, just passing
the basic fonts and colors to the editor for the common tags, like this.

/*
Theme Name: Simple-Static
*/
/*
Visual editor styles (for TinyMCE)
*/

html .mceContentBody {
max-width:620px;

}
p, ul, ol, blockquote {

font-family: “Adobe Garamond Pro”, Garamond, Georgia,

font-size: 16px;
line-height: 24px;
}
hl, h2, h3, h4, h5, h6 {
font-family: Helvetica, Arial, sans-serif;
}
body, input, textarea {
font-size: 14px;
line-height: 18px;

}
p {
margin-bottom: 16px;
}
ul {
margin: 0 0 lé6px 24px;
}
ol {

margin: 0 0 lépx 24px;

}

ul ul, ol ol, ul ol, ol ul {
margin-bottom:0;

}

cite, em, 1 {
font-style: italic;
border: none;

}

blockgquote {
font-style: italic;
padding: 0 24px;

}

abbr, acronym {
border-bottom: lpx dotted #666;
cursor: help;

}

a:link, a:visited {
color:#630;

}

aractive, a:hover {
color: #a80;

hl {
margin: 48px 0 24px O;
font-size: 36px;
line-height: 36px;

}

h2 {
margin: 48px 0 12px 0;
font-size: 24px;
line-height: 24px;

}

img {

margin: O;
max-width: 620px;

.alignleft, img.alignleft ({
display: inline;
float: left;
margin: 0 15px 15px 0;

}

.alignright, img.alignright ({
display: inline;
float: right;
margin: 0 0 15px 105px;

}

.aligncenter, img.aligncenter {
clear: both;
display: block;
margin-left: auto;
margin-right: auto;

}

.wp-caption {
padding: 10px 7px;
border: 1px solid #bfbfbf;
font-size: 12px;
color: #888;
font-style: italic;
text-align:center;

}

.wp-caption img {
margin: 5px;

}

p.wp-caption-text {
margin: 10px 0 0 O;
padding: O;
line-height: 1l4px;

“Times New Roman”,

serif;

Defining the commonly used elements like this will make your Visual editor feel a lot more like your site, as you'll see in Figure 7-11.

Publish

Here there be styles!

Permalink: http://10.0.1.5/sss/2010/09/here-there-be -styles/ | Edit Get Shortlink

Save Draft Preview

Status: Draft Edit

Upload/Insert [=] A Visual HTML
B A0 it Visibility: Public Edit

=

B (| F |a8e| i= [[i= | ¢¢

[l
]
Ml

— —
et A = [™"] ublish immediately Edit

Move to Trash [publish __

These styles look like this thanks to editor-style.css in the theme. Picking up on fonts, link colors
and headers is a pretty neat way to make the admin interface feel more like your site.

Categories
It can be wonh the time All Categories Most Used
Wouldn't you say? ™ News
(O Blog
e Bullets
e Bullets

* Bullets for everyone

That'll be all, thanks.

Path:
Word count: 52 Last edited by tdh on September 22, 2010 at 10:56 pm

+ Add New Category

Figure 7-11: Editing the front page using the Visual editor

And We’re Done!

There you go; one theme suitable for many semi-static sites, as shown in Figure 7-12. Your fictional company got their Web site, shown in
Figure 7-13, and they were mighty happy with it and how easy it is to update.

SIMPLE STATIC SITE set b D

FRONT PAGE WHAT WE DO THE TEAM NEWS BLOG GET IN TOUCH

This here is a widget area that only sits
on the custom header area, not on yosur
Sfeatured post beader. Swell hub?

ShoOts rainbows!

This is the front page. This text is content saved on the actual Page, which in turn have the

Frontpage Template picked as a Template from the Page Attributes box. Very nifty. e sl
Here there be styles!
Now, to fill it out some more, here’s a photo and some pretty latin words! How stylish can ihinge getr Frody stykah roalty.

Another really interesting news story

And here is my brilliant excerpt that means
you'll want to click the link, right?

Lorem Ipsum babYI This here’s a news post ya'll

Gotta love them news!
Lorem ipsum dolor sit amet, convallis ornare mi diam vivamus, r— Hello world!
nascetur elit. Praesent vel, dolor netus. Posuere lorem : Say hello to the world, dear WordPress theme!
adipiscing, vulputate id ipsum sed luctus fringilla, massa
nesciunt scelerisque integer ut potenti lorem. Nec cras ornare
LATEST BLOG POSTS
wvel quis libero, ultricies pede gravida iaculis suspendisse nullam Yet another blog post
inceptos, pellentesque porta sed. Ultricies condimentum, sed You can biog about this and that, yo.

uma, sed eget sed lacus risus mauris, varius libero lacinia feugiat

Figure 7-12: A static front page in need of some TLC

—
Search for: (Search

SIMPLE STATIC SITE

FRONT PAGE WHAT WE DO THE TEAM NEWS BLOG GET IN TOUCH

H " Id' Information
e o wor : NEWS - Written on September 14, 2010 @ 9:55 pm by

Thord Daniel Hedengren
Welcome to WordPress. This is your first post. Edit or delete it, then start blogging! Tags: Another tag, Tag, Wooohooo!

Well, don’t mind if I do! This is a simple dummy blog post on a simple dummy theme without
any real TLC. Adding some images, boosting with your logo and, if you have the heart and NEWS & PRESS

mind, giving this theme some child theme love will take it a long way. Here there be styles!
How stylish can things get? Pretty stylish really.

Another really interesting news story

=3z And here is my brilliant excerpt that means
IS R [S | B you'll want to click the link, right?

This here's a news post ya’ll
Gotta love them news!

Figure 7-13: Reading a single, dummy news post

Get the semi-static theme for free

My semi-static Web site theme is available for free under the GPL license, obviously. If you don’'t want to copy and paste the code, you can
always get the theme yourself and use it as is; or hack it any way you'd like. The theme is called Semi-Static and you can get links and whatnot
fromhttp://tdh.me/wordpress/semi-static.

And yes, Semi-Static is hosted on wordpress.org, but the link is not available at the time of publication. Just visit the previously mentioned
semi-static link for everything you need.

The Semi-Static described and discussed in this book was version 1.0. Be aware that when you download the theme, things might have
changed slightly as you read this chapter.

Building child themes on Semi-Static sites

I would’ve done an awfully poor job if Semi-Static wasn't ready for child theming, and so it is. All themes can act as a parent theme obviously,
but they can be better or less suited to do so, and I've been aiming for the latter. That's why the get template part () that calls for the loop
always points to a specific loop file, to make it easier for you to overwrite a specific functionality. If you need a different kind of sidebar, that's
easily added in a child theme as well, as is just about any template file you'd want to treat differently. Because the menus are managed with the
custom Menus feature, you can easily extend Semi-Static without altering too many files, which makes it easy to customize using a child theme.
Not to mention the obvious alterations, such as fonts and colors.

Wrapping It Up

As this chapter has surely shown, WordPress works perfectly well for powering traditional Web sites. Sure, there are a few things you need to
keep in mind, such as category links and whatnot, but what CMS doesn’t need for you to actually plan how the site should be built and working?
Yeah, that’s what | thought. . .

Next up is something a bit flashier. You'll create a theme meant primarily for displaying media content. That's right; text will have to take a step
back as we put the attachments in focus.

Chapter 8: A Media Theme

In this chapter, | show you how to build a theme that focuses on images rather than text. This site could be a portfolio that shows off your photos,
videos, or art, or any site that relies heavily on images and their descriptions. An image may speak a thousand words, but when it comes to
WordPress that phrase simply means you need to think a bit differently about layout and design. You have to consider other issues and
concerns as well, such as how to show image information, image titles, and so on when browsing a media-focused site.

In the following sections, | show you how to build a portfolio theme.

Building sites for Images and Video

Text isn’'t always the primary type of content on the site you're building. You may also want to showcase your photographs or videos. You can
use just about any theme for this, of course, but if you want to display a large, pretty image (see Figure 8-1), the ideal column width for text just
won't do.

In short, sometimes you’'re not building for text, you're building for attachments.

Attachments are the kinds of files you typically add to your post and often these files are images. The main template file for displaying
attachments, when they’re not just sitting in a post, is attachment.php.

- |

S n I P f l - Search for: (Search) !
!

I m p e ort o Io ABOUT GETIN TOUCH PORTFOLIO FRONT PAGE !
!

!

«— Portfolio post \
-, . . !
Writing station |
October 3, 2010 by Thord Daniel Hedengren Edit This :
!

iPad and Moleskine |
This is my writing station when I'm at the cabin. An :
iPad, a bluetooth keyboard, and my trusty Moleskine |
notebook |
The full sized image is 1024 x 765 pixels :
!

!

!

!

!

'

!

!

|

!

]

!

|

~

Figure 8-1: This is what you're after, a display focused on image content

Planning Your Portfolio site

The theme I build in this chapter has a simple layout that | designed primarily for showcasing images and video. | want some text to go with
every media file that | show, so I still keep it pretty simple; but | also offer links to larger versions without the text.

Figure 8-2 shows the simple sketch | made in my notebook for this portfolio site.

Site layout

If you can tell from my rough sketch, the site layout is pretty straightforward. You're looking at a single view post here, not the front page. The
design features a simple header with a menu, the main content (an image from a gallery) is the focus, and some text on the right-hand side
(along with meta data, and stuff like that). Below the image is the option to go to the previous or next image in the gallery, and underneath it all
are widget areas.

This design is 960 pixels wide, which means that it can work with text in the main content area as well because it is 640 pixels wide. If you use
an appropriate font size, this layout can work well enough. With a single click, | give visitors a larger view of the images, using the full width of the
design. | have designed a front page as well, but it is not as important at this time. The image content is key here, so that's what you should
focus on.

I did a Photoshop mock-up for the project in Chapter 7. That's not all that important in this case because the primary element is media content,
which in this case means photos. I'll tackle the minor stuff as | go along.

Figure 8-2: The portfolio theme design sketch

Making Everything Fit Together

You use the WordPress media manager to upload attachments by clicking the Add an Image icon in your post screen (in action in Figure 8-3).
These attachments are usually images, but they needn’t be. In the case of this theme, | focus on images, but several different MIME types are
supported. As mentioned earlier, the template file for showing attachments in single view is attachment.php. If you need more fine-grained
control, you can rely on more in-depth categories, such as image.php and video.php.

Add an Image

From Computer From URL Media Library

Add media files from your computer

Choose files to upload select Files Cancel Upload

Maximum upload file size: 32MB
You are using the Flash uploader. Problems? Try the Browser uploader instead.

After a file has been uploaded, you can add titles and descriptions

ﬁ 3025837298_d65bb8da68_b Show

100% 4304283694_aB8337af924_o.jpg Crunching...
4473059799_b0ec9246d0_b.jpg
4654934821_eB8ccBla515 b.jpg
4922590535_8eee56281e_b.jpg
4976444947 _9162c¢70cc0_b.jpg

4986373969_82dfc5cb4a_b.jpg

4993216609_5a3dc85666_b.jpg
5025681575_8596ef8a6f _b.jpg
5029642804_017b1ae099_o (1).jpg

5029642804_017b1ae099_o.jpg

Figure 8-3: Uploading some media files

An image Gallery

Although it's great that you can control single view when it comes to attachments, images usually reside within posts. So when building a
portfolio site like this one, | have to decide how to display the content. Because | need gallery support, that sort of decides it for me: The images
need to be in posts. In this case, | create a category named Portfolio; but it could just as well have been a custom post type if | needed to keep
them entirely separate from the rest of the site.

So, each gallery will be a post in the Portfolio category. Right, glad we got that out of the way.

The content flow

Next, I need to figure out how the site will actually work. My front page will list the latest galleries from the portfolio, which translates to the latest
posts in the Portfolio category. The front page also needs some descriptive text about the site, and stuff like that, but I'll not worry about that for
now.

Clicking a link for a portfolio gallery leads to the post with the gallery. This consists of a gallery (using the [gallery] shortcode, which I'm sure
you're familiar with) and some descriptive text using excerpt and content when needed. You can manage this with the single.php template
file.

Clicking animage in the gallery opens the image view, which is the image.php template file. This is what you saw in the simple design sketchin
Figure 8-2. When | click the image from the gallery post, | open the default view, which shows the medium-size image at 640 pixels wide. The
content to the right is fetched from the image title and description. There will also be links for viewing the original version of the image. At the
bottom, I have thumbnails for browsing the gallery.

What else? Well, I'll have the necessary template files for Pages and widget areas in the footer. The header will use the Menus feature for easy
management.

Building the Media site

It is time to build the portfolio theme. First, create the style.css file with the following theme header, declaring everything necessary, which in this
case means the theme name, tags, and so on.

/*
Theme Name: Simple Pfolio
Theme URI: http://tdh.me/wordpress/simple-pfolio/
Description: A theme meant for simple portfolio sites, hence the name.
Version: 1.0
Tags: light, two-columns, right-sidebar, fixed-width, threaded-comments, translation-ready, custom-menu, editor-style
Author: Thord Daniel Hedengren
Author URI: http://tdh.me/
This theme was originally created for use in the book
Smashing WordPress Themes, written by yours truly.

Read more about my books at http://tdh.me/books/
*/

As you can see I've named this theme Simple Pfolio. I'll return to the stylesheet later.

The functions.PHP file

Let's start with the functions.php file. This theme needs it for the custom menu feature, as well as for several widget areas. Four of these widget
areas are in the footer; one is on the right-hand side everywhere except on the front page or on a page belonging to the Portfolio category,
which has its own right-side widget area. The final widget areas are for the front page.

Portfolio posts don't use the right column for widgets.

Here is the functions.php file, properly commented.

<?php
// We need a textdomain for localization support,
// with language files in the /lang folder
load theme textdomain(‘simple-pfolio’, TEMPLATEPATH . ‘/lang’);

// This is the default content width, 640 px
if (! isset($content width))
Scontent width = 640;

// Adding theme support for post thumbnails
add theme support(‘post-thumbnails’);

// Telling WordPress to use editor-style.css for the visual editor
add editor style();

// Adding feed links to header
add theme support(‘automatic-feed-links’);
// MENU AREA
/] —mmmm———
// Adding and defining the Menu area found in the header.php file
register nav_menus(array(
‘top-menu’ => (‘Top Menu’, ‘simple-pfolio’),
))i
// WIDGET AREAS

// Right column widget area
register sidebar(array(

‘name’ => (‘Default Right Column’, ‘simple-pfolio’),
‘id’ => ‘default-right-column’,
‘description’ => (‘The right column on pages outside the Portfolio.’, ‘simple-pfolio’),

))i
// Right column widget area on the Portfolio category
register sidebar(array(

‘name’ => (‘Portfolio Right Column’, ‘simple-pfolio’),
‘id” => ‘portfolio-right-column’,
‘description’ => (‘The right column on the Portfolio category.’, ‘simple-pfolio’),

‘before widget’ => ‘<1i id="%1$s” class="widget news %2$s”>’,
‘after widget’ => ‘</1i>’,
‘before title’ => ‘<h2 class="widgettitle”>’,
‘after title’ => ‘</h2>’,
))i
// Right column widget area on the front page
register sidebar(array(

‘name’ => (‘Front Page Right Column’, ‘simple-pfolio’),
‘id’” => ‘frontpage-right-column’,
‘description’ => (‘The right column on the front page.’, ‘simple-pfolio’),

‘before widget’ => ‘<1li id="%1$s” class="widget news %28s”>’,
‘after widget’ => ‘</1i>’,

‘before title’ => ‘<h2 class="widgettitle”>’,

‘after title’ => ‘</h2>',

// Left column in the footer
register sidebar(array(

‘name’ => (‘Footer Left Side’, ‘simple-pfolio’),
‘id’ => ‘footer-left-side’,
‘description’ => (‘The left hand side of the footer.’, ‘simple-pfolio’),

‘before widget’ => ‘<1li id="%1$s” class="widget footer %238s”>’,
‘after widget’ => ‘</1i>’,
‘before title’ => ‘<h2 class="widgettitle”>’,
‘after title’ => ‘</h2>',
))i
// Middle column in the footer
register sidebar(array(

‘name’ => (‘Footer Middle Column’, ‘simple-pfolio’),
‘id’ => ‘footer-middle-column’,
‘description’ => (‘The middle column in the footer.’, ‘simple-pfolio’),

‘before widget’ => '<1i id="%1$s” class="widget footer %2$s”>’,
‘after widget’ => ‘</1i>’,
‘before title’ => ‘<h2 class="widgettitle”>’,
‘after title’ => ‘</h2>’,
))i
// Right column in the footer
register sidebar(array(

‘name’ => (‘Footer Right Column’, ‘simple-pfolio’),
‘id’ => ‘footer-right-column’,
‘description’ => (‘The right hand column in the footer.’, ‘simple-pfolio’),

‘before widget’ => ‘<1li id="%1$s” class="widget footer %238s”>’,
‘after widget’ => ‘</1i>’,
‘before title’ => ‘<h2 class="widgettitle”>’,
‘after title’ => ‘</h2>',
))i

// Far right column in the footer
register sidebar(array(

‘name’ => (‘Footer Far Right Column’, ‘simple-pfolio’),
‘id’ => ‘footer-far-right-column’,
‘description’ => (‘The far right column in the footer.’, ‘simple-pfolio’),

‘before widget’ => ‘<1i id="%1$s” class="widget %2$s”>',
‘after widget’ => ‘</1i>’,
‘before title’ => ‘<h2 class="widgettitle”>’,
‘after title’ => ‘</h2>',
))i

// Front page widget area

register sidebar(array(
‘name’ => (‘Front Page Welcome Area’, ‘simple-pfolio’),
‘id’” => ‘home-welcome’,
‘description’ => (‘The welcome area in the content column on the front page.’, ‘simple-pfolio’),
‘before widget’ => ‘<div 1d="%1$s” class="widget-home %2$s”>’,
‘after widget’ => ‘</div>’,
‘before title’ => ‘<h2 class="widgettitle”>’,
‘after title’ => ‘</h2>',

))i

2>

You'll recognize most of this code from Chapter 7. I've used textdomain for localization, this time called simple-pfolio. F'm adding theme support
for featured images (that is, post-thumbnails), a stylesheet for the Visual editor, and so on. If you don’t remember what these things are, jump
back to Chapter 7 and read up.

Setting up the basic shell

As always, | want to kick off the site with header.php, containing every opening div needed for the page, and wrap it up in footer.php. This is a
two-column page (which breaks up into four columns in the footer), so it is pretty straightforward. I've got the necessary wrapping div’s, a
div#content column to the left, and a sidebar column to the right.

Let's start by looking at header.php.

<!DOCTYPE html>
<html <?php language attributes(); ?>>

<head>
<meta charset="<?php bloginfo(‘charset’); ?>" />
<title><?php
// Changing the title for various sections on the site
if (is_home ()) {

bloginfo(‘name’);

} elseif (is category() || is tag()) {

single cat title(); echo ‘' • ' ; bloginfo(‘name’);
} elseif (is single() || is page()) {

single post title()
} else {

wp title('’,true);

’

}
?></title>

<link rel="profile” href="http://gmpg.org/xfn/11" />
<link rel="stylesheet” type="text/css” media="all” href="<?php bloginfo(‘stylesheet url’); 2>" />
<link rel="pingback” href="<?php bloginfo(‘pingback url’); 2> />
<?php wp _head(); ?>
</head>
<body <?php body class(); ?>>
<div id="site”>
<div id="wrap”>
<div id="header”>
<?php
// Checking if it is the front page in which case we’ll use an hl
if (is front page()) { 2>
<hl id="logo”>
<a href="<?php bloginfo(‘url’); ?>” title="<?php bloginfo(‘title’); 2>">
<?php
// Getting the site title
bloginfo(‘title’);
?>

</hl>
<?php }
// If it isn’t the front page this is what we’ll use
else { ?>
<div id="logo”>
<a href="<?php bloginfo(‘url’); ?>” title="<?php bloginfo(‘title’); ?>">
<?php
// Getting the site title
bloginfo(‘title’);

2>

</div>
<?php } ?>
<div class="search”>
<?php
// The default search form
get search form();
>
<?php
// Checking if there’s anything in Top Menu
if (has nav menu(‘top-menu’)) {
// If there is, adds the Top Menu area
wp_nav_menu(array (
‘menu’ => ‘Top Menu’,
‘container’ => ‘div’,
‘container class’ => ‘top-menu’,
‘theme location’ => ‘top-menu’,
))
}
2>
</div>

</div>
<div id="plate”>

You may recognize a lot of the code from the semi-static theme example in Chapter 7. The custom header isn’t there, as | won’'t be using that,
and I moved the custom menu up to the right, under the search form. Other than that, the theme is basically the same and ends by opening up
the div#plate tag for the actual site. While Simple Pfolio won't have support for custom backgrounds at the moment, it may be nice to be able
to add it later, right?

I'll get to the footer later in this section, as it contains some nice things. For now, | want to review the site structure before moving on:

[div#site]
[div#wrap]
[div#header]
[div#plate]
[div#content]

[div#sidebar-container]

[div#footer-widgets]
[div#footer]

The index.php template is simple enough when put into context here. After all, it only featured the div#content contents, which is a call to the
loop.php template tag — or 1oop-index.php really, because we want to make this theme as child themeable as possible. The Simple Pfolio
only features one loop template, just as Simple Static did.

<?php get header(); 2>
<div id="content”>
<?php get_template part(‘loop’, ‘index’); 2>
</div>

<?php get sidebar(); 2>
<?php get footer(); 2>

With that, let's get down to business.

Single posts and attachments

My galleries reside in posts, which in turn lead to a single image view. In other words, | use single.php to display the content properly. After all,
there is content, and there is content on a site like this. | check the category to see if itis a Portfolio post. fitis, | use the full width, as itis
supposed to contain a gallery. Ifit's not a Portfolio post, | use the default sidebar to the right of the content.

<?php get header(); 2>

<div id="content” class="<?php portfoliocheck(); ?2>">
<?php get template part(‘loop’, ‘single’); 2>
</div>
<?php
// Check whether this is NOT the Portfolio category
if (!in category(‘portfolio’)) {

get sidebar();
}

?>
<?php get footer(); 2>

You no doubt noticed the portfoliocheck () tag. This isn’t a standard WordPress template tag but a function | added to functions.php to
check whether 'm on a post belonging to the Portfolio category. Following is the function code, added at the end of functions.php.

// PORTFOLIO CATEGORY CHECK
// Function to be used with div#content
function portfoliocheck() {
// Check whether this is NOT the Portfolio category
// If it is NOT, echo column
if (!in category(‘portfolio’)) {
echo ‘column’;
}
// If it is the Portfolio category, echo widecolumn
else {
echo ‘widecolumn’;

}

The function echoes either column or widecolumn depending on whether the post belongs to the Portfolio category or not. By sticking this
code in a function (in functions.php) and using that in single.php, | keep the latter cleaner. You could also swap portfoliocheck () in
single.php for the contents on the function in functions.php, but it wouldn’t look as good.

Back to single.php then. Besides the check to see what class div#content should get, you also need to take the sidebar into account. If
there’s no sidebar, which there isn’t on Portfolio posts thanks to the check in single.php, you obviously want to use the full width, hence the
widecolumn class. If there is a sidebar, you need to take that into account and use the column class. | set the width in style.css, which I revisit
later.

.column {
width: 640px; /* Active content width 640 px */
}

.widecolumn {
width: 960px; /* Full width 960 px */
}

So how do these checks work? Take a look at the sidebar code. Because | don’t want a sidebar on Portfolio posts, | check to confirm that I'm
not on a Portfolio post, in which case I call get _sidebar (). That's what the exclamation mark means in frontof the in_category ()
conditional tag, as PHP savvy people already know.

Now, my single-post template outputs a sidebar on every single-post view, other than posts belonging to the Portfolio category. | can style this
and make it pretty later; for now, | want to move on to the image.php (rather than the more general attachment.php) template. This is what opens
(see Gallery Settings in Figure 8-4) when you click an image pointing to an attachment page (something you control on a per-image basis in the
media manager). Thus, this is the actual image view (Figure 8-5 displays my Portfolio post).

Add an Image

Writing station
5029642804_017blae099_o
5025681575_8596ef8a6f_b
4993216609_5a3dc85666_b
4986373969_82dfcS5cb4a_b
4922590535_8eee56281e_b
Mario guarding

4473059799_b0ec9246d0_b

B
-
v
o
—
il
]
Z

Save all changes
Gallery Settings
Link thumbnails to: O Image File @ Attachment Page
Order images by: Menu order —
Order: ® Ascending (O Descending

Gallery columns:

Update gallery settings

Figure 8-4: Inserting a gallery from the media manager, via the Edit Post screen

My image.php template file is simple enough. All I need is the loop (otherwise, | don’t get the image description, which incidentally doesn’t have
to reside within it), a code snippet that outputs the actual attachment (the image) the way | want, the obvious calls to the header and the footer,
as well as the sidebar | want to use.

Before you take a look at the following code, remember that | haven’t added the thumbnail browsing yet. | get to that a little later in this chapter.

{3} Dashboard

5 Posts
Posts
Add New
Categories

Post Tags
2y Media
&® Links
[C] Pages

) Comments

[E6] Appearance
£% Plugins

&, Users

T} Tools

[37] Settings

ﬁ;} Simple Portfolio serch Engines Blocked

New Post

v Edit Post

Portfolio post

Permalink: http://10.0.1.23 /s55/2010/10/portfolio-post/ | Edit View Post Get Shortlink

Upload/insert [EH A & Visual HTMI

Bz |&|i=]=« ===
... "
Oh my, that is one very random set of images, wouldn't you say so? Then
again, for testing purposes it works perfectly fine so what am I complaining .
about really? No, you don't have to answer that question, it was rhetorical. .

Path:

Word count: 42

Excerpt

Last edited by Thord Daniel Hedengren on October 10, 2010 at 6:22 pm

This here portfolio post contains a bunch of random images snagged from my very own Flickr account.

Excerpts are optional hand-crafted summaries of your content that can be used in your theme. Learn more about manual excerpts.

v Howdy, Thord Daniel Hedengren | Log Out

Screen Options Help

Publish
Preview Changes

Status: Published Edit
Visibility: Public Edit

™ Published on: Oct 3, 2010 @ 22:12 Edit

Move to Trash

Categories -/

All Categories Most Used

™ Portfolio
] Blog
] News

+ Add New Category

Post Tags

Add

Separate tags with commas
A tag More tags

Whoa Photo

taggy

i

Figure 8-5: That big image is a gallery inserted into a post on the Edit Post screen

<?php get header(); 2>

<div id="content”>

<?php
// Loop it

if (have posts ())

: while (have posts())

<div class="medium-image”>

<?php echo wp get attachment image(S$post->ID, $size='"medium’

</div>

<?php

// End the loop
endif; ?>

endwhile;

</div>

<?php get sidebar(‘attachment’); 2>
<?php get footer(); 2>

the post(); 72>

Choose from the most used lace b1

, false); 7>

The loop is familiar by now, but the part about outputting the image might not be. Fm using wp_get attachment image (), which needs to get
the correct ID with the Spost->1D parameter. The $image="medium’ is obviously the image size for this particular image call. 'm using the
medium-size image, which I've set to 640 pixels width under Settings, Media in the WordPress admin panel (see Figure 8-6). In the preceding

code, the last parameter, set to false, actually defaults to false and decides whether the MIME type (image in this case, which could be video,
audio, and so on) icon should be shown. That's a no on the icon here.

Help

o | - -
(i} Dashboard 'IY Media Settings
& Posts Image sizes
() Media The sizes listed below determine the maximum dimensions in pixels to use when inserting an image into the body of a post.
.frf;' Links e
= Thumbnail size Wwidth 150 Height 130
;.D Pages) Crop thumbnail to exact dimensions (normally thumbnails are proportional)
) Comments ;]
Medium size Max Width 640 Max Height O
D) Appearance Large size Max Width 960 Max Height O
P’ ;
£ Plugins
_ Embeds
& Users
Fﬁ Tools Auto-embeds g Attempt to automatically embed all plain text URLs
Settings > Maximum embed size width 640 Height 0
General If the width value is left blank, embeds will default to the max width of your theme.
Writing
Reading Uploading Files
Discussion
Media Store uploads in this folder Default is wp-content/uploads
Privacy
Full URL path to files Configuring this is optional. By default, it
Permalinks

should be blank.

Organize my uploads into month- and year-based folders

Figure 8-6: Media Settings screen; note the Medium size setting

I hope you recognize the get sidebar (‘attachment’) code. This means that the sidebar m calling is sidebar-attachment.php, and not the
regular sidebar.php template. I'll get to that next.

The attachment sidebar

This sidebar is meant to work on all kinds of attachments, not justimages. | have some conditional tags to sort that out. You use this sidebar
whenever you're viewing an attachment, which most often means you clicked an image from a gallery within a post.

<div id="sidebar-container”>
<ul id=”sidebar”>
<li id="postmeta” class="widget”>

<p>
<!-- Link back to original post -->
← <a href="<?php echo get permalink(S$post->post parent); 2>">
<?php echo get the title($post->post parent); ?>

</p>
<hl>
<?php
// Title of the attachment
the title();
2>
</h1l>
<p class="meta-attachment”>
<!-- Metadata -->
<?php the date(); ?>
<?php echo _ (‘by’, ‘simple-pfolio’); 2>

<?php the author(); 2>
<?php edit post link(); 2>
</p>

<?php
// Outputs the attachment Caption if available
if (!empty(Spost->post excerpt)) {

echo ‘<h2>';
the excerpt();
echo ‘</h2>’";

2>

<?php
// Outputs the attachment Description if available
if (!empty(Spost->post excerpt)) {
echo ‘<div class="entry-attachment”>’;
the content();
echo ‘</div>';

?>

<?php
// If it is an image, output data
// Thanks Twenty Ten
if (wp attachment is image()) {
Smetadata = wp get attachment metadata();
echo ‘<p>'; B B B
printf((‘The full sized image is %s pixels’, ‘simple-pfolio’),
sprintf(‘%3$s × %$4$s’,
wp_get attachment url(),
esc_attr((‘Link to full-size image’, ‘simple-pfolio’)),
Smetadatal[‘width’],
Smetadatal[‘height’]

)
);
echo ‘</p>';

2>
</1i>

</div>

If you look under the Link back to original post comment, you can see that | use $post->post_parent forthe get permalink() and

get _the title() tags. This is obviously to fetch the data from the parent post, which is the actual portfolio post to which this attachment
belongs. Had | used the regular permalink and title tags, I'd get the data from the attachment post that 'm on, and that’s not really the idea when
linking back. Hence, | need to rely on the slightly more flexible get permalink () and get the title (). Neither of these output the results by
default, so | need to output them with PHP, hence the echo.

Moving on, I've shown a great example of why get the title () is needed because the h1 heading uses the title () to output the title of
the attachment.

The tags outputting the meta data for the attachment are simple enough, the author (), the date (), and a PHP snippet for localization
purposes — you've seen it all before.

The two snippets for outputting the attachment caption and description, managed with the exce